ACKNOWLEDGEMENTS

Praise and gratitude to God for His blessing and His grace that this thesis report entitled “SYNTHESIS OF ZINC OXIDE NANOPARTICLES USING PERICARPS AND SEEDS OF MANGOSTEEN AND EVALUATION OF ITS CHARACTERISTICS AND FREE RADICAL SCAVENGING ACTIVITY” could come to a completion. This thesis report is written as a partial fullfilment of the academic requirements to obtain degree of Sarjana Teknologi Pertanian Strata Satu in Food Technology Study Program, Faculty of Science and Technology of Universitas Pelita Harapan, Tangerang.

This thesis report would not be possible and successfully completed without the help, support, prayers and guidance from several parties. In this occasion, expression of sincere gratitude and appreciation are given to:

1. Prof. Dr. Manlian Ronald A. Simanjuntak, ST., MT., D. Min. as the dean of Science and Technology Faculty.

2. Ir. W. Donald R. Pokatong, M.Sc., Ph. D as the head of Food Technology Study Program, for the opportunity to conduct this research and approval of this thesis report.

3. Ir. A. Herry Cahyana, M.Sc, Ph.D, as the main supervisor for the guidance, information, advice and support during the process and completion of thesis report.

4. Yuniwaty Halim, MSc, as the co-supervisor and Head of Quality Control Laboratory, for the help, support, patience and guidance, and opportunity to conduct this research in the laboratory.
5. Dr. Tagor M. Siregar, MSi., Head of Chemistry Laboratory, and Natania, M.Eng, Head of Food Processing Laboratory, as head of examiner and member of examiner respectively for the helpful insight during the thesis period.

6. Dr. Ir. Adolf J.N Parhusip, MSi. as the Head of Microbiology Laboratory respectively for the opportunity to conduct the research.

7. Ms. Virly and Mr. Andra as the lecturer assistant, for the patience, help and guidance during the research in the laboratory.

8. Mr. Adzie, Mr. Darius, Mr. Hendra, and Mr. Yosafat as laboratory assistance for the friendly guidance and help during the research.

9. All lecturers and staff of the UPH Food Technology Department.

10. Beloved parents and sister for help and endless support.

11. Novelia Gunario, Ardelyta Susanti, Claudia Severesia, Lisa Angereni, and Evelyn as thesis partners in one batch who always accompany, support, help and give comfort during laboratory work and thesis completion.

12. Felicia Mirabel, Olivia Virginia, Stella Jessica, Melissa Tanniadi, and Bubble for the support, help, and consolation during thesis work and completion.

13. Fellow classmates of Food Technology Class C 2013 for the information shared together.

It is realized that this report is far from excellence. Critics and suggestions are gladly accepted for better improvement in the future.

Tangerang, May 2017
TABLE OF CONTENTS

COVER
STATEMENT OF THESIS AUTHENTICITY
APPROVAL BY THESIS SUPERVISORS
APPROVAL BY THESIS EXAMINATION COMMITTEE
ABSTRACT .. iv
ACKNOWLEDGEMENTS .. vi
TABLE OF CONTENTS .. ix
LIST OF TABLES .. xii
LIST OF FIGURES ... xiii
LIST OF APPENDICES ... xv

CHAPTER I INTRODUCTION
1.1 Background ... 1
1.2 Research Problem .. 3
1.3 Research Objectives ... 3
 1.3.1 General Objectives ... 3
 1.3.2 Specific Objectives ... 3

CHAPTER II LITERATURE REVIEW
2.1 Nanoparticles ... 5
 2.1.1 Synthesis Mechanism of Nanoparticles 6
2.2 Zinc Oxide Nanoparticles .. 8
 2.2.1 Antioxidant Activity of ZnO-NPs ... 8
2.3 Mangosteen (*Garcinia mangostana* Linn.) 9
2.4 Extraction .. 11
 2.4.1 Maceration ... 11
 2.4.2 Type of Solvents ... 11
2.5 Calcination .. 12
CHAPTER III RESEARCH METHODOLOGY

3.1 Materials and Equipment ... 14
3.2 Research Method .. 14
3.2.1 Research Stage I.. 15
 3.2.1.1 Sample Preparation and Extraction (Ibrahim, et al., 2014 with
 modification)... 15
 3.2.1.2 Zinc Oxide Nanoparticles Synthesis (Kumar, et al., 2014) 16
3.2.2 Research Stage II (Parra and Haque, 2014) 17
3.3 Experimental Design... 18
 3.3.1 Experimental Design Research Stage I... 18
 3.3.2 Experimental Design Research Stage II....................................... 22
3.4 Analysis Procedure.. 23
 3.4.1 Yield of Mangosteen Extract (Nielsen, 2010)............................... 23
 3.4.2 Dry Matter Analysis (Nielsen, 2010).. 23
 3.4.3 Total Phenolic Content (Handayani, et al., 2014)......................... 24
 3.4.4 Total Flavonoids Content (Handayani, et al., 2014)..................... 25
 3.4.5 Free Radical Scavenging Activity (Kumar, et al., 2014)............... 25
 3.4.6 Characterization of Zinc Oxide Nanoparticles (Kumar et al., 2014;
 Rades, et al., 2014; Zhao, et al., 2014).. 26

CHAPTER IV RESULTS AND DISCUSSIONS

4.1 Extraction of Mangosteen ... 28
 4.1.1 Yield of Mangosteen Extract ... 29
 4.1.2 Amount of Dry Matter ... 31
 4.1.3 Reducing Power of Plant Extract ... 34
 4.1.3.1 Total Phenolic Content of Mangosteen Extract 35
 4.1.3.2 Total Flavonoids Content of Mangosteen Extract 37
 4.1.4 Free Radical Scavenging Activity of Mangosteen Extract 39
4.2 Formation of Zinc Oxide Nanoparticles .. 42
 4.2.1 Yield of Zinc Oxide Nanoparticles ... 43
 4.2.2 Free Radical Scavenging Activity of Zinc Oxide Nanoparticles 45
4.3 Effect of Calcination towards the Free Radical Scavenging Activity of Zinc
 Oxide Nanoparticles ... 48
4.3.1 Effect of Calcination towards the Characteristics of Zinc Oxide Nanoparticles... 50

CHAPTER V CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions ... 53
5.2 Suggestions ... 53

BIBLIOGRAPHY .. 55
APPENDICES ... 58
LIST OF TABLES

Table 3.1 Treatment of research stage 1 of biosynthesis of ZnO-NPs using mangosteen pericarp extract .. 19
Table 3.2 Treatment of research stage 1 of biosynthesis of ZnO-NPs using mangosteen seed extract ... 20
Table 3.3 Treatment of research stage 2 of biosynthesis of ZnO-NPs using mangosteen pericarp or seed extract ... 23
Table 4.1 Extraction yield of mangosteen pericarps and seeds 29
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1 Different types of nanoparticle synthesis from plant resources</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2 Mechanisms of nanoparticle synthesis</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.3 Garcinia mangostana Linn.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.4 Chemical structure of α-mangostin</td>
<td>10</td>
</tr>
<tr>
<td>Figure 3.1 Flow chart of research stage I</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.2 Flow chart of research stage II</td>
<td>17</td>
</tr>
<tr>
<td>Figure 4.1 The effect of types of solvent to the amount of dry matter of mangosteen pericarps extract</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.2 The effect of types of solvent to the amount of dry matter of mangosteen seeds extract</td>
<td>33</td>
</tr>
<tr>
<td>Figure 4.3 The effect of type of sample to the amount of dry matter</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.4 The effect of types of solvent on total phenolic content of mangosteen pericarps extract</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.5 The effect of types of solvent on total phenolic content of mangosteen seeds extract</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.6 The effect of type of sample on total phenolic content</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4.7 The effect of types of solvent on the total flavonoids content of mangosteen pericarps extract</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.8 The effect of types of solvent on the total flavonoid content of mangosteen seeds extract</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.9 The effect of type of sample to the total flavonoid content</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.10 The effect of types of solvent to the free radical scavenging activity of mangosteen pericarps extract</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4.11 The effect of types of solvent to the free radical scavenging activity of mangosteen seeds extract</td>
<td>40</td>
</tr>
</tbody>
</table>
Figure 4.12 The effect of type of sample to the free radical scavenging activity of extract ... 42
Figure 4.13 Reaction mechanism of the formation of ZnO-NPs 42
Figure 4.14 Amount of ZnO-NPs synthesized from mangosteen pericarps extract ... 44
Figure 4.15 Amount of ZnO-NPs synthesized from mangosteen seeds extract 44
Figure 4.16 The effect of type of sample to the amount of ZnO-NPs 45
Figure 4.17 The effect of types of solvent to the free radical scavenging activity of ZnO-NPs synthesized from mangosteen pericarps extract........... 46
Figure 4.18 The effect of types of solvent to the free radical scavenging activity of ZnO-NPs synthesized from mangosteen seeds extract............. 46
Figure 4.19 The effect of type of sample on the free radical scavenging activity of ZnO-NPs ... 48
Figure 4.20 Effect of calcination towards the free radical scavenging activity of ZnO-NPs .. 49
Figure 4.21 SEM morphology of ZnO-NPs treated (a) without calcination; (b) with calcination at 100°C using x200 magnification...................... 51
Figure 4.22 SEM morphology of ZnO-NPs treated (a) without calcination; (b) with calcination at 100°C using x500 magnification 51
Figure 4.23 SEM morphology of ZnO-NPs treated (a) without calcination; (b) with calcination at 100°C using x1500 magnification............... 51
LIST OF APPENDICES

Appendix A. Result of Identification Test of Mangosteen Fruit............................ A-1
Appendix B. Yield of Mangosteen Pericarps and Seeds Extract B-1
Appendix C. Dry Matter of Mangosteen Pericarps and Seeds Extract C-1
Appendix D. Total Phenolic Content of Mangosteen Pericarps and Seeds Extract...
... D-1
Appendix E. Total Flavonoid Content of Mangosteen Pericarps and Seeds Extract
... E-1
Appendix F. Free Radical Scavenging Activity of Mangosteen Pericarps and
Seeds Extract.. F-1
Appendix G. Yield of Zinc Oxide Nanoparticles Synthesized from Mangosteen
Pericarps and Seeds... G-1
Appendix H. Free Radical Scavenging Activity of Zinc Oxide Nanoparticles
Synthesized from Mangosteen Pericarps and Seeds................................. H-1
Appendix I. Free Radical Scavenging Activity of Zinc Oxide Nanoparticles
Synthesized from Mangosteen Pericarps Extracted with Methanol as the Best Solvent with Different Treatments................................. I-1
Appendix J. Characterization of Zinc Oxide Nanoparticles Treated without
Calcination... J-1
Appendix K. Characterization of Zinc Oxide Nanoparticles Treated with
Calcination... K-1