ACKNOWLEDGEMENTS

A greatest gratitude is given to Jesus Christ for His blessing and companion to this thesis entitled “EFFECT OF JACKFRUIT-SEED STARCH TO CANDELILLA WAX RATIO, AND PLASTICIZERS ON CHARACTERISTICS OF COMPOSITE EDIBLE FILM AND ITS UTILIZATION AS EDIBLE COATING TO STRAWBERRY” was completed. The author is fully aware that this report would not be complete without help support and guidance from many people, especially during the process of laboratory experiment and the completion of this report. Therefore, the writer would like to give highest appreciation to:

1. Prof. Dr. Manlian Ronald A.S., S.T., MT., D.Min., Dean of Faculty of Science and Technology for continuous support and guidance.

2. Ir. W. Donald R. Pokatong, M.Sc., Ph.D., Head of Study Program of Food Technology, and as Thesis Supervisor, for the time, patient, guidance and support during the research, precise editing and completion of the thesis.

3. Dr. Adolf J.N. Parhusip, Head of Microbiology Laboratory and Natania, M.Eng, Head of Food Processing Technology Laboratory, both as examiner for useful advices regarding thesis revision.

4. Nuri Anugrahami, MP as academic supervisor for the time, support and guidance during this study program.

5. Ratna Handayani, MP., Deputy Head of Study Program of Food Technology for continuous support and helpful guidance.
6. Dr. Tagor M. Siregar, Head of Chemistry Laboratory and Yuniwaty Halim, M.Sc., Head of Quality Control and Research Laboratories for giving the permission in doing the research in the respective laboratory.

7. Julia Ratna Wijaya, MAppSc as former Head of Study Program of Food Technology.

8. Sisi Patricia L.A Gultom, M.Eng as a former Deputy Head of Study Program of Food Technology.

9. Aji, Hendra, Yosafat, Andra and Virly, for the enormous help at the laboratories.

10. All lecturers of Study Program of Food Technology who teach the author during studying at Universitas Pelita Harapan.

11. My beloved family for the endless support, understanding and prayers during this up and down situation of research.

12. Team “Nangka”- Janice Patricia and Nadya Larasati for the support, teamwork, togetherness, randomness and happiness during the research.

13. Team Sir Donald including “Team Grains” and “Team Gembili” for the togetherness, endless support and help during research.

15. Angelita Bong and Lulu Luzuarti as fully understanding seniors who have always patiently answered, guided and given advices even to random questions during this research.
16. Januarius Armando, Alfonsus, Karina Unidjaja, Jessica Christina, Laurencia Wiranata, Nadia Theodora, Janet Reiyanti, Margaret Lili, Vibi Priscilla, Bella Louisa, Claudia Severesia, Christopher Imansantoso, Stella Beatrix, S.TP. who always cheers the author during up and down situation

17. All Batch one friends for support, help, tolerance and togetherness for this up and down moments of research.

18. All members of Class C, Food Technology for the informative sharing and discussions shared together.

19. All family, friends and colleagues who cannot be mentioned one by one and contribute to the completion of the thesis report.

The author realize that this report is far from excellence and has room to be improved, therefore any suggestions are very welcomed. Last but not least, the author hopes this report can be useful and informative for the readers.

Tangerang, January 2017

Author
TABLE OF CONTENTS

COVER
STATEMENT OF THESIS AUTHENTICITY
APPROVAL BY THESIS SUPERVISOR
APPROVAL BY THESIS EXAMINATOR COMMITTEE
ABSTRACT ... v
ACKNOWLEDGEMENTS ... vi
TABLE OF CONTENTS .. ix
LIST OF TABLES .. xiii
LIST OF FIGURES ... xiv
LIST OF APPENDICES ... xvi

CHAPTER I INTRODUCTION
1.1 Background .. 1
1.2 Research Problem .. 3
1.3 Objective .. 3
1.3.1 General Objectives ... 3
1.3.2 Specific Objectives ... 4

CHAPTER II LITERATURE REVIEW
2.1 Jackfruit ... 5
2.1.1 Jackfruit Seed .. 6
2.1.1.1 Jackfruit Seed Starch .. 7
2.2 Candelilla Wax .. 8
2.3 Edible Packaging .. 9
2.3.1 Composite Edible Coating .. 12
2.3.2 Other Additives ... 14
2.3.2.1 Plasticizer .. 14
2.3.2.2 Lecithin ... 18
2.4 Strawberry ..19
2.4.1 Strawberry Edible Coating ...21

CHAPTER III RESEARCH METHODOLOGY

3.1. Materials and Equipment ..23
3.2. Research Stage ...24
 3.2.1 Preliminary Stages ...24
 3.2.1.1 Jackfruit Seed Starch Isolation ...24
 3.2.1.2 Determination of Ratio of Edible Film Materials26
 3.2.2 Main Research ..28
 3.2.2.1 Stage I ...28
 3.2.2.2 Stage II ...28
3.3 Analysis ..30
 3.3.1 Jackfruit Seed Starch Chemical Analysis ..30
 3.3.1.1 Moisture Content ...30
 3.3.1.2 Ash Content ...30
 3.3.1.3 Protein Content ..31
 3.3.1.4 Fat Content ...31
 3.3.1.5 Carbohydrate ..32
 3.3.1.6 Degree of Whiteness ..32
 3.3.1.7 Starch Content ..32
 3.3.1.8 Amylose Content ..33
 3.3.2 Edible Film Characteristics ...34
 3.3.2.1 Visual Inspections of Edible Film Appearance ...34
 3.3.2.2 Tensile Strength and Elongation ...34
 3.3.2.3 Water Vapor Transmission Rate ...34
 3.3.2.4 Thickness ...35
 3.3.3 Strawberry Properties ..35
 3.3.3.1 Hardness ...35
 3.3.3.2 Weight Loss ...35
 3.3.3.3 pH ...35
 3.3.3.4 Total Sugar Lane-Eynon ..35
 3.3.3.5 Total Titratable Acid ...36
 3.3.3.6 Total Plate Count ..36
3.3.3.7 Hedonic test ...36
3.3.3.8 Scoring Test ...37
3.4 Experimental Design ...37
 3.4.1 Preliminary Stage ..37
 3.4.1.1 Jackfruit Seed Starch Isolation37
 3.4.1.2 Determination of Edible Film Materials37
 3.4.2 Main Research ...38
 3.4.2.1 Stage I ...38
 3.4.2.2 Stage II ...40

CHAPTER IV RESULTS AND DISCUSSION
 4.1 Taxonomical Verification and Chemical Composition of
 Jackfruit Seed ...43
 4.2 Jackfruit Seed Starch Properties44
 4.2.1 Yield of Starch ..44
 4.2.2 Starch, Amylose and Amylopectin Contents from Jackfruit
 Seed Starch ...44
 4.2.3 Whiteness Index (WI) ...45
 4.3 Determination of Ratio of Composite Edible Film Materials45
 4.3.1 Tensile Strength ..46
 4.3.2 Elongation ..47
 4.4 Edible Film Characteristics ..48
 4.4.1 Edible Film Appearance ...48
 4.4.2 Tensile Strength ..50
 4.4.2.1 Edible Film with Glycerol as Plasticizer50
 4.4.2.2 Edible Film with Sorbitol as Plasticizer51
 4.4.3 Elongation ..53
 4.4.3.1 Edible Film with Glycerol as Plasticizer53
 4.4.3.2 Edible Film with Sorbitol as Plasticizer54
 4.4.4 Water Vapor Transmission Rate56
 4.4.4.1 Edible Film with Glycerol as Plasticizer56
 4.4.4.2 Edible Film as Sorbitol as Plasticizer57
 4.4.5 Thickness ..60
 4.4.5.1 Edible Film with Glycerol as Plasticizer60
4.4.5.2 Edible Film with Sorbitol as Plasticizer.................................62
4.4.6 Selection of Film Formulation for Coating Application...............63
4.5 Coated Strawberry..64
 4.5.1 Weight Loss ...64
 4.5.2 pH Analysis...67
 4.5.2.1 Room Temperature Storage..67
 4.5.2.2 Refrigeration Storage...69
 4.5.3 Total Titratable Acidity..70
 4.5.3.1 Room Temperature Storage..70
 4.5.4 Hardness...73
 4.5.4.1 Room Temperature Storage..73
 4.5.4.2 Refrigeration Storage...75
 4.5.5 Total Sugar..76
 4.5.5.1 Room Temperature Storage..76
 4.5.5.2 Refrigeration Storage...78
 4.5.6 Microbial Plate Count...79
 4.5.6.1 Room temperature Storage..79
 4.5.6.2 Refrigeration Temperature Storage...................................82
 4.5.7 Shelf Life...84
 4.5.7.1 Room Temperature Storage..84
 4.5.7.2 Refrigeration Storage...86
 4.5.8 Scoring and Hedonic Test of Coated Strawberry at
 Initial Storage Time ..87

CHAPTER V CONCLUSIONS AND SUGGESTIONS
 5.1 Conclusions...90
 5.2 Suggestions..91

BIBLIOGRAPHY...93
APPENDICES..101
LIST OF TABLES

Table 2.1 Chemical composition of jackfruit seed .. 7
Table 2.2 Changes in biochemical composition of jackfruit
(fresh weight basis) .. 8
Table 2.3 Properties of candelilla wax .. 9
Table 2.4 Nutrient composition of fresh strawberry .. 20
Table 3.1 Ratio of jackfruit seed starch to candelilla wax ... 26
Table 3.2 Experimental design for combination of ratio jackfruit seed
starch to candelilla wax ... 38
Table 3.3 Experimental design for combination of ratio jackfruit seed
starch to candelilla wax (P) with plasticizers (Q) .. 41
Table 3.4 Experimental design for selected formulation of composite edible
coating ... 42
Table 4.1 Chemical composition of jackfruit seed .. 43
Table 4.2 Scoring test .. 88
Table 4.3 Hedonic Test ... 89
LIST OF FIGURES

page

Figure 2.1 Jackfruit and its seeds ... 5
Figure 3.1 Procedure of jackfruit seed starch isolation............................... 25
Figure 3.2 Composite edible film making ... 27
Figure 3.3 The procedure to coat and store strawberry 29
Figure 4.1 Effect of ratio of jackfruit seed starch to candelilla wax on tensile strength of edible film ... 46
Figure 4.2 Film appearance with PEG 400 as plasticizer 49
Figure 4.3 Effect of ratio of jackfruit seed starch to candelilla wax added with glycerol on tensile strength of edible film .. 50
Figure 4.4 Effect of ratio of jackfruit seed starch to candelilla wax added with sorbitol on tensile strength of edible film ... 52
Figure 4.5 Effect of glycerol concentration on elongation of edible film 53
Figure 4.6 Effect of ratio of jackfruit seed starch to candelilla wax added with sorbitol on elongation of edible film ... 55
Figure 4.7 Effect of ratio of jackfruit seed starch to candelilla wax added with glycerol on water vapor transmission rate (WVTR) of edible film 57
Figure 4.8 Effect of ratio of jackfruit seed starch to candelilla wax added with sorbitol on water vapor transmission rate (WVTR) of edible Film ... 58
Figure 4.9 Effect of ratio of jackfruit seed starch to candelilla on thickness of edible film ... 61
Figure 4.10 Effect of ratio of jackfruit seed starch to candelilla wax added with sorbitol on thickness of edible film ... 63
Figure 4.11 Effect of composite edible coating formulations on weight loss of strawberry at the end of room temperature and refrigeration storage ... 66

Figure 4.12 Effect of composite edible coating formulations on pH of strawberry at (a) initial condition and (b) at the end of room temperature storage ... 68

Figure 4.13 Effect of composite edible coating formulations on pH of strawberry at the end of refrigeration storage ... 70

Figure 4.14 Effect of composite edible coating formulations on total titratable acidity (TTA) of strawberry at the end of room temperature storage ... 71

Figure 4.15 Effect of composite edible coating formulations on total titratable acidity (TTA) of strawberry at the end of refrigeration storage 72

Figure 4.16 Effect of composite edible coating formulations on hardness of strawberry at (a) initial condition and (b) at the end of room temperature storage ... 74

Figure 4.17 Effect of composite edible coating formulations on hardness of strawberry at the end of refrigeration storage ... 76

Figure 4.18 Effect of composite edible coating formulations on total sugar of strawberry at the end of room temperature storage ... 77

Figure 4.19 Effect of composite edible coating formulations on total sugar of strawberry at the end of refrigeration storage ... 79

Figure 4.20 Effect of composite edible coating formulations on total plate count at (a) initial condition and (b) at the end of room temperature storage with PCA and PDA (24 and 48 hours incubation time respectively) ... 80

Figure 4.21 Effect of composite edible coating formulations on total plate count at the end of refrigeration storage with PCA and PDA (24 and 48 hours incubation time respectively) ... 82

Figure 4.22 Effect of composite edible coating formulations on shelf life of strawberry at room temperature and refrigeration storage 85
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Species Verification of Jackfruit Seed</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>Chemical Analysis of Jackfruit Seed</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>Characteristic of Jackfruit Seed Starch</td>
<td>C-1</td>
</tr>
<tr>
<td>D</td>
<td>Determination of Ratio of Jackfruit Seed Strach and Candelilla Wax</td>
<td>D-1</td>
</tr>
<tr>
<td>E</td>
<td>Tensile Strength and Elongation of Edible Film</td>
<td>E-1</td>
</tr>
<tr>
<td>F</td>
<td>Thickness and Water Vapor Transmission Rate of Edible Film</td>
<td>F-1</td>
</tr>
<tr>
<td>G</td>
<td>Weight Loss of strawberry</td>
<td>G-1</td>
</tr>
<tr>
<td>H</td>
<td>pH of strawberry</td>
<td>H-1</td>
</tr>
<tr>
<td>I</td>
<td>Total Titratable Acidity (TTA) of strawberry</td>
<td>I-1</td>
</tr>
<tr>
<td>J</td>
<td>Hardness of strawberry</td>
<td>J-1</td>
</tr>
<tr>
<td>K</td>
<td>Total Sugar of Strawberry</td>
<td>K-1</td>
</tr>
<tr>
<td>L</td>
<td>Microbial Plate Count</td>
<td>L-1</td>
</tr>
<tr>
<td>M</td>
<td>Scoring Test Data</td>
<td>M-1</td>
</tr>
<tr>
<td>N</td>
<td>Hedonic Test</td>
<td>N-1</td>
</tr>
<tr>
<td>O</td>
<td>Shelf Life of Strawberry</td>
<td>O-1</td>
</tr>
<tr>
<td>P</td>
<td>Candelilla Wax COA</td>
<td>P-1</td>
</tr>
</tbody>
</table>