
CHAPTER I

INTRODUCTION

1.1 Background

In the ever-dynamic landscape of global financial markets, investors

leverage an array of financial derivative assets to satisfy their investment goals.

Amongst these assets, options hold a prominent position. They afford investors the

prerogative to buy or sell the underlying asset at a predetermined price. The

inherent nature of options empowers investors to broaden their strategy; they

facilitate a range of hedging techniques and encourage speculative investments

concerning the volatility of the underlying asset. This strategic latitude provided

by options has been the subject of intense scrutiny since the latter part of the

twentieth century. Research has delved into aspects such as the volatility risk

associated with pure options portfolios [1], models for options investment centred

on diversification and global hedging [2], and the application of the numerical

Monte Carlo method for pricing options [3]. These studies exemplify the

mathematical rigour involved in the realm of options investment strategy.

In recent years, research has shifted towards more sophisticated and nuanced

methods. One novel approach, the learning random variable (LRV) technique,

integrates stochastic gradient descent (SGD) optimization with Monte Carlo price

simulation, producing highly accurate results even for high-dimensional models

[4]. Concurrently, studies have been conducted into the performance of advanced

methodologies such as support vector regression (SVR), genetic algorithm (GA),

random forest (RF), and other decision tree approaches for options pricing [5].

Additionally, comparative studies have been undertaken to contrast the

jump-diffusion Monte Carlo method and the classical Black-Scholes model for

options pricing [6]. These developments underscore the evolving intricacy of

methodologies employed in the field of options investment.

1.2 Problem Statement

The significance of options pricing in financial mathematics originates from

the premise that numerous corporate liabilities can be expressed as options or their

combinations [3]. Therefore, an ongoing stream of research is dedicated to

devising high-performance, high-accuracy methodologies for pricing complex

options. The ground-breaking paper by Black and Scholes provides a closed-form
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analytic solution for pricing European options with non-dividend paying

underlying stock. While extensions to this analytic solution exist for continuously

compounding dividend yields [7], more intricate dividend schemes typically

necessitate the application of numerical methods for valuation [8, 3]. This

engenders a challenging scenario wherein researchers must select from a plethora

of numerical methods—such as machine learning-based approaches, binomial

trees, or other numerical integration methodologies—or create a bespoke

framework that aligns with their performance benchmarks.

Among the numerous numerical techniques, the Monte Carlo framework

proposes a relatively straightforward method for pricing options. This is achieved

by approximating the expected payoff value of the option after generating a set of

price evolutions under predefined parameters and assumptions. However, the

elementary form of Monte Carlo simulation is often marred by inaccuracies and a

high degree of variance. This serves as the bedrock for studies aimed at refining

the Monte Carlo framework. One prevalent methodology for enhancing the Monte

Carlo method is classified as variance reduction techniques (VRT). The central

principle of VRT involves modifying the options payoff function to primarily

reduce the variance of the result. In numerous instances, reducing the variance in

this manner also augments the accuracy of the result, thereby boosting the overall

model’s performance. Additional benefits of lower variance include a more precise

confidence interval estimate and a higher rate of convergence.

Despite these advantages, the implementation of advanced VRT typically

heightens the computational complexity of the simulation, implying extended

simulation times. Consequently, a trade-off scenario emerges, compelling

researchers to select a model that optimally aligns with their interests. Earlier

research on Monte Carlo VRT primarily focused on a select few methods applied

to a single or a limited subset of option styles. No existing research thoroughly

examines and compares the performance of commonly used VRT across different

option styles with varying underlying asset parameters. Moreover, although

decision-making frameworks have been widely studied in cognitive science and

utility function contexts [9, 10, 11], none have been specifically targeted at VRT

model selection based on individual researcher preferences.

1.3 Research Purpose

The objectives of this research can be distilled into the following key points:

1. To propose a technical methodology for employing various Monte Carlo
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variance reduction techniques (VRT) for the pricing of both ordinary and

exotic options. This will include the development of mixed-model VRT,

which are theoretically superior to traditional VRT.

2. To conduct a comprehensive, results-oriented analysis concerning the

performance of each VRT across a broad array of option styles. This

analysis aims to identify the highest-performing VRT, in a utility-neutral

context, for each specific case.

3. To establish a decision-making framework offering a utility-based

quantitative tool. This tool is designed to aid researchers in model selection

in alignment with their specific utility specifications.

These objectives serve to improve the understanding and application of

Monte Carlo variance reduction techniques in options pricing and to facilitate more

effective, utility-aligned decision-making among researchers in this field.

1.4 Benefits of Research

In concurrence with the research purpose, the benefits of the research can be

summarized by the following:

1. Advancing the technical methodology associated with Monte Carlo VRT,

including the formulation of a mixed-model VRT.

2. Extensive exposition of the theoretical backgrounds of each VRT, which

would justify the empirical results and provide valuable, credible, and tested

scientific information for other researchers.

3. The application of a decision framework in this research would provide

researchers an alternative view on quantitative decision-making.

1.5 List of Models

The ordinary and exotic options of interest in this research encompass:

1. Ordinary European options

2. American put option

3. Geometric price Asian options
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4. Asset binary options

5. Deferred rebate options

6. Down and knock-in barrier put Options

7. Up and knock-in barrier call Options

The following VRT models of interest in this research are as follow:

1. Simple Monte Carlo simulation (SMCS)

2. Antithetic variates (AMCS)

3. Control variates (CMCS)

4. Non-parametric importance sampling (IMCS)

5. Mixed method antithetic-importance (MMAI)

6. Mixed method importance-antithetic (MMIA)

1.6 Model Assumptions

The options pricing is based on two different frameworks: The

Black-Scholes (BSM) framework for the analytic solution, and the Monte Carlo

simulation (MCS) framework for the numeric solution, while model selection is

based on the decision framework founded on utilitarian views and VNM utility.

Therefore, the resulting model assumption is the fusion these three frameworks,

with some specific modifications [8, 3]:

1. Dividend payouts, if exist, are not directly computed. Instead, it is embedded

in the adjusted closing price of the underlying stock.

2. Markets are frictionless, efficient, and has no taxation.

3. Investors are rational agents acting solely to maximize profit.

4. The discount rate is continuously compounded with a constant risk-free rate

r, which implies that investors may borrow or invest in risk-free assets at an

unlimited amount with continuously compounded risk-free rate as the interest.

5. Volatility of the underlying stock is Homoscedastic (constant volatility

model).
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6. The price of the underlying asset follows a geometric Brownian motion, and

its returns, or the ratio of successive stock prices, is log-normally distributed.

7. The price of the options are based on risk-neutral pricing, which implies that

investors are indifferent of the risk-factors associated with each options; the

prices of the simulated options are solely determined by their respective

discounted payoff function.

8. The preferences of each researchers can be represented accurately by the

logistic function steepness parameter of their respective utility functions.

1.7 Review of Literature

The foundation of options pricing can be traced back to the seminal paper by

Black and Scholes, which established a robust framework for determining options

prices analytically [8]. The accuracy of VRT models, a key performance measure,

can be assessed against these analytical solutions, underscoring their relevance to

this research. The Black and Scholes model goes beyond merely providing explicit

solutions for European call and put options; their work integral in providing the

basis of risk-neutral pricing, which aids in pricing exotic options. The parameters

d1 and d2 embody the risk-neutral probabilities, which underpin the notion that

derivatives can be priced by discounting such probabilities. More specifically,

N(d2) can be interpreted as the risk neutral probability that ST > K, while

S×N(d1) can be understood as the risk-neutral present value of the expected asset

price at expiration. This idea extends to the derivation of analytical solutions for

other option styles, including barrier options. The paper also sets forth key

assumptions for this research, most notably, that the returns on the underlying asset

adhere to a geometric Brownian motion. Boyle’s pioneering work provides a

comprehensive understanding of how Monte Carlo simulations, by virtue of their

sample-mean estimation and numerical integration capabilities, offer unbiased

numerical price solutions [3]. Boyle introduced several strategies to curb the

variance of the simulation, which led to the development of variance reduction

techniques (VRT). The primary objective of VRT is to craft a function that

modifies the options payoff function in Monte Carlo simulations in a manner that

retains unbiasedness, reduces variance, and avoids the need for additional

simulations. This idea lays the groundwork for the development of mixed-method

VRT, which is the focal point of this paper.
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Kroese’s research presents a more contemporary and practical approach,

highlighting the growing importance of Monte Carlo simulations in today’s

complex financial landscape, where options and other derivatives have increased

in complexity [12]. Crucially, this research aligns with the primary objective of

this paper: to thoroughly analyze the performance of various VRT in the context of

options pricing. Finally, the ground-breaking research by Von Neumann and

Morgenstern established a comprehensive mathematical foundation for utility

theory [9]. They proposed a utility function that is predicated on the premise that

the preferred decision maximizes expected utility value. While it is based on the

concept of risky decisions, outcomes with a certain outcome can always be

interpreted as degenerate lotteries. This theoretical foundation is vital for

developing a rigorous, comprehensive, and accurate decision-making framework

for model selection in the context of this study.

1.8 Review of Chapters

This section offers a brief summary of each chapter in this research, serving

as a helpful guide for readers.

• Chapter 1: This introductory chapter outlines the context and justifications

for the research, offering a comprehensive backdrop for the study. It outlines

key assumptions, a list of models and option styles, and provides a review of

relevant literature.

• Chapter 2: This chapter delves into the rigorous theoretical exposition that

underpins this research. It covers fundamental concepts of options, offers

detailed proofs and explanations of Black-Scholes solutions for various

option styles, introduces Monte Carlo simulation and variance reduction

techniques, explains the mathematical constructions of each VRT, and

outlines the mathematical reasoning behind the decision framework used for

VRT selection based on the specific preference parameters of researchers.

• Chapter 3: Detailing the specific methodologies employed in this research,

this chapter covers additional techniques to handle the intricacies of barrier

and American options, the formulation of the utility function, and offers a

complete workflow example enriched with snippets of R code.

• Chapter 4: This chapter presents the simulation results for each VRT and

option style. It applies the decision framework in select scenarios and
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extends the analysis to incorporate control variate (CV) optimization,

alongside convergence and sensitivity analysis.

• Chapter 5: The final chapter draws conclusions from the research findings

and outlines potential avenues for further investigation. It paves the way for

future research, building upon the outcomes and insights derived from this

study.
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