Hana, Illaria (2014) Estimasi volatilitas dan prediksi return indeks LQ45 dengan markov switching garch model = Volatility estimation and prediction of index LQ45 using markov switching garch model. Bachelor thesis, Universitas Pelita Harapan.
Preview
COVER.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (495kB) | Preview
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
ABSTRACT_watermark.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (248kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
TOC_watermark.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (607kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
BAB 1_watermark (1).pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (596kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
BAB 2_watermark.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
BAB 3_watermark.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
BAB 4_watermark.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
BAB 5_watermark.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (342kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
BIBL_watermark.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (238kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
appendices_watermark.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
Abstract
Dalam berinvestasi khususnya pada saham, kita melihat dua faktor yaitu faktor tingkat pengembalian saham (return) dan faktor tingkat resiko. Tingkat pengembalian saham diketahui dengan persentasi perubahan yang acak (random walk) pada
return saham, sedangkan tingkat resiko digambarkan dalam volatilitas. Penelitian ini bertujuan untuk mengestimasi nilai volatilitas dan prediksi return saham di masa depan. Data yang digunakan dalam penelitian ini adalah indeks harga
saham penutupan harian (closing price) dari indeks harga saham LQ 45 periode Januari 2007- Januari 2013. Untuk kepentingan itu dikembangkan basis model estimasi yaitu model Markov Switching GARCH. Markov Switching adalah model
yang mampu mendeteksi perubahan struktur pada volatilitas. Hasil penelitian menunjukkan bahwa model Markov Switching mampu melakukan estimasi volatilitas dan prediksi return yang lebih baik dibandingkan ARIMA, dan GARCH(1,1). Sedangkan perhitungan pada volatilitas menunjukkan tingkat resiko investasi yang tidak tinggi pada indeks LQ45.
/
Two important factors in stock investment are stock returns and risk factor levels. Stock returns are determined by the percentage change in the random walk on stock returns, while the level of risk is described in volatility. This study aims to estimate the predictive value and the volatility of stock return in the future. The data used in this study are daily closing stock price of index LQ 45 period January 2007 - January 2013. In this study, the Markov Switching GARCH model was developed. Markov switching model is able to detect structural and regime changes in volatility. The results showed that the Markov Switching Model is able to predict value of return better than ARIMA, and GARCH(1,1). While the volatility calculation implied that the level of investment risk is not high on index LQ45.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Hana, Illaria NIM11220100001 UNSPECIFIED UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Senobua, Yosef Oktavianus NIDN9990299867 yosef.senobua@lecturer.uph.edu Thesis advisor Saputra, Kie Van Ivanky NIDN0401038203 kie.saputra@uph.edu |
Uncontrolled Keywords: | volatility; ARIMA; GARCH markov switching; markov switching GARCH. |
Subjects: | Q Science > QA Mathematics |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics |
Depositing User: | Stefanus Tanjung |
Date Deposited: | 02 Nov 2023 07:22 |
Last Modified: | 13 Nov 2023 11:43 |
URI: | http://repository.uph.edu/id/eprint/58596 |