ACKNOWLEDGEMENT

Sincere gratitude wanted to be presented to God, for all the blessings and guidance throughout this thesis from the research until the completion of this report. This thesis report is written to report and share the result of the research with title “Study of Antioxidant Activities of Various Mushrooms due to Browning Mechanisms”. With the presence of this report, it is hoped that new information and deeper understanding can be shared for better development and implication of browning in relation with food stability, nutrition, and health.

During the research and report completion, writer has been blessed by support, help, and guidance by many people so that this report can be accomplished on time. In this occasion, writer wants to give deep gratitude to:

1) Ir. A. Herry Cahyana, M. Sc., Ph. D., as the Thesis Supervisor for his time, guidance, help, and advice in supervising writer during conducting this research until completion of report.

2) Jeremia Manuel, MP, as the Thesis Co-supervisor for his patience, advice, help, and guidance during the research until finishing this report.

3) Nuri Arum Anugrahati, MP, as Head of Food Technology at Universitas Pelita Harapan for the opportunity and support during the final project.

4) Bu Mery as Head of Quality Control Laboratory, Bu Ratna as the Head of Research Laboratory, Pak Tagor as the Head of Chemistry Laboratory for the help and understanding during conducting research in the laboratory.

5) All the Food Technology lecturers, especially Ms.Nia and Mr.Azis, for the knowledge and information that have been shared along the research.
6) Mr. Rudy, Mr. Ade, and Mr. Yos as laboratory technician for their help, time, and patience during conducting the research and lending the equipments.

7) Parents Robert Wijaya Antono and Helyana Lesmana, and sister Lina Antono for the support, love, and encouragement that have been given during the accomplishment of this research.

8) Adeline Kartika Putri as the laboratory mates for the information, knowledge, help, companion, and laughter shared along this research.

9) Andre, Angelin, Mike, Iren, Tessa, Bernike, Clara, Zenia, and Lina, as antioxidant members for the information and help throughout the research.

10) Daffodilo Octo, for being there and the support given throughout research.

11) Amalia Cherisa, Jenifer Susilo, Charissa Lungkat, Cindy Novita, and Jovian Bunawan for their presence and all the support that have been given during this past few months.

12) All C class member and all the students of Food Technology 2007 for all the support and help.

13) All people that have highly given contribution during research process until finishing this report that cannot be mentioned one by one.

Writer realizes that this report is far from perfect although maximum efforts have been given by writer. Therefore, critic and suggestion are welcomed for better improvement in future. Writer hopes that information containing in this report can serve as reference and useful information for readers who read it.

Jakarta, February 2011

Writer
TABLE OF CONTENT

COVER
COVER PAGE
STATEMENT OF THESIS AUTHENTICITY
APPROVAL BY THESIS SUPERVISORS
APPROVAL BY THESIS EXAMINATION COMMITTEE
ABSTRACT ... v
ACKNOWLEDGEMENT .. vi
TABLE OF CONTENT .. viii
LIST OF TABLES .. vii
LIST OF FIGURE .. xi
LIST OF APPENDICES ... xiv

CHAPTER I INTRODUCTION
1.1 Research Background ... 1
1.2 Research Problems .. 2
1.3 Objectives ... 3
 1.3.1 General Objectives .. 3
 1.3.2 Specific Objectives ... 3

CHAPTER II LITERATURE REVIEW
2.1 Mushroom .. 4
 2.1.1 White Oyster Mushroom (Pleurotus florida) 5
 2.1.2 Champignon Mushroom (Agaricus bisporus) 7
 2.1.3 Straw/ ‘Merang’ Mushroom (Volvariella volvacea) 8
2.2 Antioxidant .. 10
2.2.1 Measurement of Total Antioxidant Activity (DPPH Method) 12
2.2.2 Measurement of Total Phenolic Content (Folin-Ciocalteu Method) 13

2.3 Browning Reaction .. 13
 2.3.1 Enzymatic Browning ... 14
 2.3.2 Non-enzymatic Reaction .. 18

CHAPTER III RESEARCH METHODOLOGY

3.1 Materials and Equipments ... 26
3.2 Research Methodology .. 26
 3.2.1 Polyphenol Oxidase (PPO) Enzyme Extraction 28
 3.2.2 Polyphenol Oxidase Enzyme Activity Assay 28
 3.2.3 Mushroom Extraction ... 29
 3.2.4 Browning Index Determination ... 30
 3.2.5 Determination of Antioxidant Activity 30
 3.2.6 Determination of Total Phenolic Content 31
 3.2.7 Absorbance Analysis of Browning Products 31
3.3 Statistical Analysis .. 32

CHAPTER IV RESULTS AND DISCUSSION

4.1 Effect of Browning on Several Characteristics of Various Mushrooms 36
 4.1.1 Effect of Browning towards Browning Index 37
 4.1.2 Effect of Browning towards Formation of Intermediate Browning
 Product (Absorbance at 294 nm) ... 40
 4.1.3 Effect of Browning towards of Final Browning Product
 (Absorbance at 420 nm) ... 43
4.1.4 Effect of Browning towards Total Phenolic Content ... 45
4.1.5 Effect of Browning towards Antioxidant Activity .. 50
4.2 Correlation of Factors Influenced by Browning Reaction 56
 4.2.1 Correlation of Factors Influenced by Enzymatic Browning
 Reaction ... 56
 4.2.2 Correlation of Factor Influenced by Non-enzymatic Browning
 Reaction ... 58

CHAPTER V CONCLUSION AND SUGGESTION
 5.1 Conclusion ... 61
 5.2 Suggestion ... 61

BIBLIOGRAPHY ... 62
APPENDICES ... 70
LIST OF TABLES

Table 2.1 Essential amino acid content in various type of mushroom.................. 4
Table 2.2 Taxonomy of *Pleurotus florida* ... 6
Table 2.3 Taxonomy of *Agaricus bisporus*... 7
Table 2.4 Taxonomy of *Volvariella volvacea*.. 9
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Oyster mushroom</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Champignon mushroom</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Straw mushroom</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Lipid autoxidantion reaction</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Hydrogen donation by antioxidant to lipid radicals</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Polyphenol oxidase pathway</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Formation of melanins from tyrosine</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Structure of phenolic compounds as PPO substrate</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Scheme of different stages of Maillard reaction</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>The initial step of the Maillard reaction between glucose and an amino acid</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Structures of furfural and HMF</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Research procedure</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flowchart of PPO enzyme extraction</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Flowchart of mushroom extraction</td>
<td>29</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Effect of heating towards PPO activity in oyster (a), straw (b), and champignon (c)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Effect of exposure to open air towards PPO activity in oyster (a), straw (b), and champignon (c)</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Effect of different non-enzymatic browning degree towards</td>
<td></td>
</tr>
</tbody>
</table>
BI of various mushrooms...37

Figure 4.4 Effect of different enzymatic browning degree towards BI
of various mushrooms...39

Figure 4.5 Effect of different non-enzymatic browning degree towards
intermediate browning product of various mushrooms......................41

Figure 4.6 Effect of different enzymatic browning degree towards
intermediate browning product of various mushrooms......................42

Figure 4.7 Effect of different non-enzymatic browning degree towards
final browning product of various mushrooms..................................43

Figure 4.8 Effect of different enzymatic browning degree towards
final browning product of various mushrooms..................................44

Figure 4.9 Effect of different non-enzymatic browning degree
towards TPC of various mushroom..46

Figure 4.10 Effect of different enzymatic browning degree towards
TPC of various mushrooms...48

Figure 4.11 Effect of different non-enzymatic browning degree
towards antioxidant activity of various mushrooms...........................51

Figure 4.12 Effect of different enzymatic browning degree towards
antioxidant activity of various mushrooms..54

Figure 4.13 Electron delocalization of antioxidant free radicals..............56

Figure 4.14 Component plot of enzymatic browning at oyster mushroom (a),
straw mushroom (b), and champignon mushroom (c)..........................57

Figure 4.15 Component plot of non-enzymatic browning at oyster mushroom
(a), straw mushroom (b), and champignon mushroom (c)....................59
LIST OF APPENDICES

Pages
Appendix A. Analysis Result of Oyster Mushroom.. A-1
Appendix B. Analysis Result of Straw Mushroom... B-1
Appendix C. Analysis Result of Champignon Mushroom................................. C-1