Lestari, Megawaty (2019) Perbandingan metode moving average (ma)dan neural network yang berbasis algoritma backprogaration dalam prediksi harga saham. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (187kB) | Preview
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (278kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (774kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (185kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (187kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (10MB)
Abstract
Harga saham mengalami perubahan yang cepat dari waktu ke waktu.Pergerakan harga saham menjadi tolak ukur bagi para investor untuk mengambil keputusan kapan sebaiknya saham dibeli, dijual atau dipertahankan. Untuk itu diperlukan suatu model analisis dengan tingkat akurasi yang tinggi dalam membantu para investor mengambil keputusan untuk mengurangi resiko kerugian. Penelitian ini menggunakan perbandingan metode Moving Average dan Neural Network algoritma Backpropagation dalam memprediksi harga saham. Data yang digunakan merupakan data historis Jakarta Stock Exchange (^JKSE) dari tahun 2010 - April 2018 yang diperoleh melalui Yahoo Finance. Dari hasil penelitian dapat disimpulkan adalah semakin kecil hasil error, maka nilai akurasinya semakin baik. Semakin kecil target error, maka jumlah epoch akan semakin besar dalam perhitungan menggunakan metode Neural Network algoritma Backpropagation.
Prediksi harga saham menggunakan metode Moving Average lebih akurat dibandingan metode Neural Network algoritma Backpropagation, dimana tingkat akurasi untuk Moving Average (MA) adalah 80,11% dan untuk Neural Network algoritma Backpropagation adalah 78,91%.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Lestari, Megawaty 1501030372 UNSPECIFIED UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Pangaribuan, Jefri Junifer UNSPECIFIED UNSPECIFIED |
Uncontrolled Keywords: | Prediksi Harga Saham, Moving Average, Neural Network, Backpropagtion |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems |
Depositing User: | Debora Sitepu |
Date Deposited: | 22 Jun 2021 09:01 |
Last Modified: | 13 Jan 2022 02:42 |
URI: | http://repository.uph.edu/id/eprint/34406 |