Wiyono, Brigitta (2021) Analisis sentimen Twitter terhadap US election 2020 dengan metode naive bayes dan support vector machine (SVM) = Twitter sentiment analysis based on us election 2020 using naive bayes and support vector machine (svm). Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title (13).pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (471kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (494kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (479kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (679kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (459kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (471kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
Abstract
Penggunaan media sosial pada manusia saat ini beragam, salah satunya adalah
penggunaan Twitter. Dengan media ini, manusia dapat dengan bebas berekspresi
dan mengutarakan pendapatnya mengenai suatu kejadian yang sedang hangat
diperbincangkan. Pendapat yang disampaikan ini tentu beragam, dan dari
keberagaman ini dapat dilihat sentimen atau kecenderungan manusia terhadap
suatu kejadian. Penelitian ini membahas mengenai analisis sentimen Twitter
terhadap kedua kandidat US Election 2020 dengan metode Naive Bayes dan
Support Vector Machine (SVM). Kedua metode ini merupakan metode supervised
learning, yang digunakan karena data yang diperoleh merupakan data yang sudah
berlabel dan pengolahannya dilakukan untuk menguji akurasi pada penggunakan
model di data baru. Analisis ini dilakukan terhadap 6437 tweets yang diperoleh
dari Twitter dan dikumpulkan selama 30 hari. Data tersebut diolah, hasilnya
terbagi menjadi 15 variabel pada model linear dan 29 variabel pada model
nonlinear. Hasil penelitian menunjukkan pada pengujian test data, dapat dilihat
bahwa SVM lebih berkompetensi dibandingkan Naive Bayes, dengan selisih paling
kecil 0.6% dan selisih terbesar 3.3%. / The use of social media varies, take Twitter for instance. With this platform, people
have the freedom to share thoughts and opinions about some topics. There might be
lots of comments, and it can be infered that this variety could gain some sentiments
on some events. The purpose of this research is to find out the sentiments from
Twitter about the two candidates of US Election 2020. The methods used in finding
these components are Naive Bayes and Support Vector Machine (SVM). Both of
this methods are supervised learning methods. The reason of using these methods
are because the data has been labeled and used to test the accuracy of the model
in the new data. The analysis was conducted on 6437 tweets from Twitter and was
collected for 30 days. It was processed, then divided into 15 variables on linear
model and 29 variables on nonlinear model. The results showed that the test data
on SVM are more competent on predicting the label than Naive Bayes, with the
smallest difference is around 0.6% and the biggest is about 3.3%.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Wiyono, Brigitta NIM01112170017 monicawiyono20@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Saputra, Kie Van Ivanky NIDN0401038203 kie.saputra@uph.edu Thesis advisor Krisnadi, Dion NIDN0316029002 dion.krisnadi@uph.edu |
Uncontrolled Keywords: | analisis sentimen; SVM; naive bayes |
Subjects: | Q Science > QA Mathematics |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics |
Depositing User: | Brigitta Monica Wiyono |
Date Deposited: | 05 Aug 2021 01:27 |
Last Modified: | 05 Aug 2021 01:27 |
URI: | http://repository.uph.edu/id/eprint/41178 |