Guinarto, Griselda (2021) Implementasi face recognition berbasis internet of things menggunakan aws iot greengrass. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (4MB)
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (378kB) | Preview
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (893kB)
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (591kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (6MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (306kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (464kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
Abstract
Teknologi biometrik telah menjadi pilihan untuk melakukan identifikasi
individu dalam berbagai bidang industri. Salah satu biometrik yang kerap
digunakan adalah pemindai sidik jari. Namun, di masa pandemi COVID-19,
melakukan identifikasi individu tanpa adanya kontak langsung sangat dianjurkan
untuk mencegah penularan virus COVID-19. Pada penelitian ini akan dilakukan
perancangan sistem pengenalan wajah untuk melakukan identifikasi individu tanpa
adanya kontak langsung. Perancangan sistem pengenalan wajah akan menerapkan
teknologi Internet of Things (IoT) dan edge AI. Perancangan sistem pengenalan
wajah akan menggunakan algoritme Viola-Jones untuk mendeteksi wajah dan
Local Binary Pattern Histogram (LBPH) dalam mengenali wajah melalui
pemanfaatan library OpenCV. Implementasi sistem pengenalan wajah akan
diintegrasi ke Raspberry Pi menggunakan AWS IoT Greengrass dan dilengkapi
dengan pengiriman notifikasi berupa email ke pengguna mengenai identitas dari
wajah yang terdeteksi. Adapun peracangan dashboard yang ditujukan sebagai
penyajian data secara keseluruhan mengenai identitas dari wajah yang terdeteksi.
Sistem pengenalan wajah yang dirancang menunjukkan tingkat akurasi sebesar
75% dalam mengenali wajah. Sistem yang dirancang dapat mengenal wajah dengan
benar pada jarak 30 cm dan 50 cm dengan pencahayaan terang atau gelap. Namun,
sistem masih memiliki kesulitan untuk mendeteksi wajah yang menggunakan
masker. Sistem yang telah dirancang dapat bekerja dengan baik dari proses deteksi
dan identifikasi individu hingga pengiriman email ke pengguna./Biometric technology has become the option for individual identification
in various industrial fields. One of the most commonly used biometrics is
fingerprint scanner. However, during the COVID-19 pandemic, identifying
individual without direct contact is highly recommended to prevent transmission of
the COVID-19 virus. In this study, a face recognition system will be designed to
identify individual without direct contact. The design of the facial recognition
system will apply Internet of Things (IoT) technology and edge AI. The design of
the face recognition system will use the Viola-Jones algorithm to detect faces and
the Local Binary Pattern Histogram (LBPH) algorithm to recognize faces through
the use of the OpenCV library. The implementation of the facial recognition system
will be integrated into the Raspberry Pi using AWS IoT Greengrass and equipped
with sending notifications in the form of email to user regarding the identity of the
detected face. The dashboard design is intended as a presentation of the overall
data regarding the identity of the detected face. The designed facial recognition
system shows an accuracy rate of 75% in recognizing faces. The designed system
can recognize faces correctly at a distance of 30 cm and 50 cm with bright or dark
lighting. However, the system still has difficulty detecting face that wears mask. The
system that has been designed can work well from the detection and identification
process of individual to sending email to user.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Guinarto, Griselda NIM03082170006 griseldaguinarto1998@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Suwandhi, Albert NIDN0117088202 albert.suwandhi@lecturer.uph.edu |
Uncontrolled Keywords: | iot; face recognition; viola-jones; local binary pattern histogram; aws |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Users 18777 not found. |
Date Deposited: | 13 Aug 2021 02:04 |
Last Modified: | 12 Jan 2022 08:51 |
URI: | http://repository.uph.edu/id/eprint/41520 |