Elvia, Elvia (2021) Perancangan sistem analisis data penjualan untuk mendukung pengambilan keputusan pada CV. Harapan Raya menggunakan algoritma apriori. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (33kB)
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (189kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (651kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (8MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (186kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (304kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
Abstract
CV. Harapan Raya merupakan salah satu perusahaan yang bergerak di bidang distributor bahan bangunan dengan bahan utama besi. Perusahaan melakukan pencatatan data transaksi penjualan produk yang dilakukan oleh pelanggan melalui software pengolah kata. Perusahaaan tentunya membutuhkan sebuah sistem analisis yang dapat digunakan dalam menunjang proses pengambilan keputusan. Data-data perusahaan yang tercatat setiap bulannya tentunya sangat banyak dan akan menjadi data yang tidak berguna apabila tidak diolah dan dianalisis dengan baik. Salah satu cara untuk melakukan analisis terhadap sekumpulan data menjadi pengetahuan adalah melalui teknik data mining. Algoritma apriori adalah salah satu algoritma data mining yang dapat digunakan pada penerapan market basket analysis (analisis keranjang belanja) untuk mencari aturan-aturan asosiasi yang memenuhi batas support dan confidence. Hasil analisis data penjualan CV. Harapan Raya dengan total data penjualan sebanyak 292 transaksi mendapatkan nilai minimum support tertinggi yaitu 5% dan menghasilkan rule berjumlah dua. Minimum confidence tertinggi yaitu 100% dan menghasilkan rule berjumlah tiga. Panjang itemset yang terbentuk yaitu 2-itemset dan 3-itemset/CV. Harapan Raya is one of the companies engaged in the distribution of building materials with iron as the main ingredient. The company records data on product sales transactions made by customers through word processing software. Companies certainly need an analysis system that can be used to support the decision-making process. The company's data that is recorded every month is certainly very large and will become useless data if it is not processed and analyzed properly. One way to analyze a set of data into knowledge is through data mining techniques. The apriori algorithm is one of the data mining algorithms that can be used in the application of market basket analysis (shopping basket analysis) to find association rules that meet support and confidence limits. The results of sales data analysis CV. Harapan Raya with a total sales data of 292 transactions got the highest minimum support value of 5% and produced 2 rules. The highest minimum confidence was 100% and produced three rules. The length of the itemset formed were 2-itemset and 3-itemset
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Elvia, Elvia NIM00000027859 lviayap@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Romindo, Romindo NIDN0111119101 romindo@lecturer.uph.edu |
Uncontrolled Keywords: | sistem informasi; analisis data penjualan; algoritma apriori |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems |
Depositing User: | Users 23322 not found. |
Date Deposited: | 03 Mar 2022 13:52 |
Last Modified: | 28 Mar 2022 12:27 |
URI: | http://repository.uph.edu/id/eprint/47027 |