Prediksi harga mobil audi bekas menggunakan metode multiple linear regression, regression tree, dan random forest

Pormes, Tenny (2022) Prediksi harga mobil audi bekas menggunakan metode multiple linear regression, regression tree, dan random forest. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title]
Preview
Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (356kB) | Preview
[thumbnail of Abstract]
Preview
Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (176kB) | Preview
[thumbnail of ToC]
Preview
Text (ToC)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (172kB) | Preview
[thumbnail of Chapter1] Text (Chapter1)
Chapter1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (173kB)
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (252kB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (368kB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (442kB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (166kB)
[thumbnail of Bibliography]
Preview
Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (166kB) | Preview
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (5MB)

Abstract

Harga mobil bekas dipengaruhi oleh banyak faktor, di antaranya adalah transmisi, jarak tempuh, bahan bakar, dll. Oleh sebab itu, untuk membantu menentukan harga mobil bekas dapat menggunakan model Machine Learning. Salah satu algoritma yang dapat digunakan dalam Machine Learning adalah model regresi linier. Model Regresi memiliki kemampuan untuk melihat hubungan antara variabel-variabel dependen dan independen. Hal ini akan memudahkan penjual atau pembeli untuk menentukan harga mobil bekas yang tepat sesuai dengan fitur-fitur yang ditawarkan. Dalam skripsi ini digunakan 3 metode, yaitu Multiple Linear Regression, Regression Tree, dan Random Forest untuk memprediksi harga mobil bekas. Dari ketiga metode tersebut, didapatkan model yang paling optimal untuk memprediksi harga mobil bekas adalah model yang menggunakan metode Random Forest berdasarkan Mean Squared Error (MSE) yang dihasilkan, yaitu sebesar 1.349,7 untuk data pelatihan dan 2.347,5 untuk data tes. Hasil MSE dari metode Random Forest ini adalah MSE terkecil dari kedua metode lain yang digunakan. / Used car’s price can be affected by a lot of factors, some of them are transmission, mileage, fuel, etc. In this thesis, we will build mathematical models to predict the price of used car using Machine Learning Model. One of the Machine Learning algorithm is linear regression model. Regression linear model has an ability to find relationship between dependent and independent variables which can help seller or buyer to put a right price of a used car based on their features. In this thesis we will discuss three methods, which are Multiple Linear Regression, Regression Tree, and Random Forest. The optimal method to predict the price of used car is Random Forest which is based on the Mean Squared Error (MSE), 1.349,7 for data train and 2.347,5 for data test. The MSE result of Random Forest is the lowest compared to the other methods in this thesis.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Pormes, Tenny
NIM00000021505
pormestenny@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Saputra, Kie Van Ivanky
NIDN0401038203
kie.saputra@uph.edu
Thesis advisor
Cahyadi, Lina
NIDN0328077701
lina.cahyadi@uph.edu
Uncontrolled Keywords: prediksi; machine learning; multiple linear regression; regression tree; random forest
Subjects: Q Science > QA Mathematics
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Depositing User: Tenny Mariana K Pormes
Date Deposited: 13 Feb 2023 05:52
Last Modified: 13 Feb 2023 05:52
URI: http://repository.uph.edu/id/eprint/54165

Actions (login required)

View Item
View Item