Kusuma, Eric Stanley (2023) perbandingan algoritma Naive Bayes dan K-Nearest Neighbor (KNN) dalam klasifikasi pemilihan program studi - studi kasus Universitas Pelita Harapan Medan. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (79kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (237kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (471kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (805kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (185kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (322kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Choosing the right study program is an important step towards building a successful career and a bright future. Therefore, a machine learning approach designed to assist in making the appropriate selection is needed. This research compares the use of the K-Nearest Neighbor (KNN) and Naïve Bayes methods with datasets derived from UPH Medan intake in 2019 and 2020, focusing on the study programs of information systems or informatics. The study was managed and conducted in Google Colab using the Python programming language. Based on the results of the training and testing data, Naïve Bayes achieved an accuracy of 56.25% for the information systems class, with a precision of 45%, recall of 83%, and an f1-score of 59%. For the informatics class, Naïve Bayes achieved a precision of 80%, recall of 40%, and an f1-score of 53%. On the other hand, K-Nearest Neighbor (KNN) achieved an accuracy of 81.25% for the information systems class, with a precision of 67%, recall of 100%, and an f1-score of 80%. For the informatics class, K-Nearest Neighbor (KNN) achieved a precision of 100%, recall of 70%, and an f1-score of 82%. Based on the performance results, the K-Nearest Neighbor (KNN) algorithm is more suitable for this case./Pemilihan program studi tepat merupakan langkah yang penting untuk membangun karir untuk mencapai kesuksesan dan masa depan yang cerah. Karena itu diperlukan machine learning yang dirancang untuk membantu pemilihan yang tepat. Penelitian ini membandingkan menggunakan metode K-Nearest Neighbor (KNN) dan Naïve Bayes dengan dataset yang berasal dari UPH Medan intake 2019 dan 2020 yang mengambil program studi sistem informasi atau informatika. Penelitian ini dikelola dan dilakukan di Google Colab dengan bahasa Pemrograman Python. Berdasarkan hasil data training dan data testing didapatkan accuracy Naïve Besar sebesar 56,25% pada class sistem informasi dengan precision 45%, recall 83%, f1-score 59% dan class informatika precision 80%, recall 40%, f1-score 53%. Sedangkan accuracy K-Nearest Neighbor (KNN) sebesar 81,25% pada class sistem informasi dengan precision 67%, recall 100%, dan f1-score 80% dan pada class informatika dengan precision 100%, recall 70%, dan f1-score 82%. Dari hasil performa algoritma K-Nearest Neighbor (KNN) lebih cocok digunakan untuk kasus ini.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Kusuma, Eric Stanley NIM03082190025 ericstanleykusuma@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Suwandhi, Albert NIDN0117088202 albert.suwandhi@lecturer.uph.edu |
Uncontrolled Keywords: | machine learning; algorithms; K-Nearest Neighbor (KNN); Naïve Bayes; program selection; study program; machine learning; algoritma; K-Nearest Neighbor (KNN); Naïve Bayes; pemilihan program studi; program studi |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Users 29133 not found. |
Date Deposited: | 17 Aug 2023 11:59 |
Last Modified: | 17 Aug 2023 11:59 |
URI: | http://repository.uph.edu/id/eprint/57741 |