Justin, Edric (2023) perbandingan algoritma Naïve Bayes dan Support Vector Machine dalam memprediksi kelulusan mahasiswa tepat waktu (studi kasus: Universitas Pelita Harapan Kampus Medan). Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (251kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (409kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (807kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (586kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (624kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (4MB)
Abstract
Timely graduation is an achievement desired by both students and universities. This is because, for students, timely graduation can help them apply for jobs and get promotions faster, while for universities, timely graduation can affect the quality and reputation of the institution. Therefore, the aim of this research is to compare the performance of the Naïve Bayes and Support Vector Machine algorithms in predicting timely graduation of students, in order to obtain the most suitable model for predicting timely graduation, so that the strategic programs can be implemented to address this issue. The data used in this study was collected through questionnaires distributed to students of Universitas Pelita Harapan Medan Campus, who have already graduated. A total of 106 data were collected, and after cleaning the data, 102 data remained. Out of these 102 data, 80% (81 data) were used for training the model, while the remaining 20% (21 data) were used for testing. These data were then used to build models using the Naïve Bayes and Support Vector Machine algorithms. The results of both models were compared, and the Naïve Bayes model achieved an overall accuracy of 95%, while the Support Vector Machine algorithm achieved an overall accuracy of 90%. The recall results for the "not timely graduation" and "timely graduation" classes in the Naïve Bayes model were 100% and 92%, respectively, while for the Support Vector Machine algorithm, were 50% and 95%. Based on these findings, it can be concluded that the model built using the Naïve Bayes algorithm is more suitable for predicting timely graduation of students./ Kelulusan tepat waktu adalah sebuah capaian yang ingin didapatkan oleh seluruh mahasiswa dan universitas. Ini disebabkan karena bagi mahasiswa kelulusan tepat waktu dapat membantu mahasiswa untuk dapat lebih cepat melamar maupun mendapatkan promosi dalam pekerjaan, sedangkan bagi universitas kelulusan tepat waktu dapat mempengaruhi kualitas dan mutu dari universitas. Dengan itu, maka tujuan dari penelitian ini adalah untuk membandingkan kinerja dari algoritma Naïve Bayes dan Support Vector Machine dalam memprediksi kelulusan mahasiswa tepat waktu, agar diperoleh model yang paling cocok dalam memprediksi kelulusan mahasiswa tepat waktu, sehingga program strategis dapat dijalankan untuk mengatasi masalah tersebut. Data yang digunakan berasal dari hasil kuesioner yang dilakukan kepada mahasiswa Universitas Pelita Harapan Kampus Medan yang sudah dinyatakan lulus. Total dari data yang dikumpulkan adalah sebanyak 106 data, yang dimana setelah dibersihkan, maka tersisa 102 data. Dari 102 data tersebut 80% diantaranya (81 data) digunakan untuk data training dan 20% sisanya (21 data) digunakan untuk data testing. Data tersebut kemudian digunakan untuk membangun model yang menggunakan algoritma Naïve Bayes dan Support Vector Machine. Hasil dari kedua model tersebut kemudian dibandingkan, yang dimana untuk model yang dibangun menggunakan algoritma Naïve Bayes mendapatkan akurasi keseluruhan sebesar 95%, sedangkan algoritma Support Vector Machine mendapatkan akurasi keseluruhan sebesar 90%. Hasil recall dari masing - masing kelas tidak lulus tepat waktu dan lulus tepat waktu dari model yang dibangun dengan algoritma Naïve Bayes adalah sebesar 100% dan 92%, sedangkan algoritma Support Vector Machine adalah sebesar 50% dan 95%, maka dari itu dapat disimpulkan bahwa model yang dibangun menggunakan algoritma Naïve Bayes lebih cocok dalam memprediksi kelulusan mahasiswa tepat waktu.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Justin, Edric NIM03082190002 edricjustin2611@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Suwandhi, Albert NIDN0117088202 albert.suwandhi@lecturer.uph.edu |
Uncontrolled Keywords: | algoritma, Naïve Bayes, Support Vector Machine, kelulusan mahasiswa, kelulusan tepat waktu |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Users 29259 not found. |
Date Deposited: | 18 Aug 2023 03:40 |
Last Modified: | 18 Aug 2023 03:40 |
URI: | http://repository.uph.edu/id/eprint/57791 |