Lim, Derrick Devin (2023) Perbandingan tingkat akurasi algoritma random forest dan k-nearest neighbor (KNN) dalam mengklasifikasi penyakit kanker paru-paru. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (65kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (382kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (597kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (563kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (6MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (198kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (780kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (6MB)
Abstract
Kanker paru-paru adalah suatu keadaan dimana terdapat sel kanker yang
berkembang secara tidak terkendali di dalam organ paru-paru. Kanker paru-paru
merupakan jenis kanker dengan tingkat kematian tertinggi dari total kematian
akibat penyakit kanker dan menjadi penyebab utama dari kematian akibat kanker
pada pria. Gejala pada kanker paru-paru sulit untuk terdeteksi pada stadium awal,
dan hanya dapat terdeteksi ketika memasuki stadium lanjut. Oleh karena itu,
penting agar dapat melakukan deteksi dini terhadap penyakit kanker paru-paru agar
peluang untuk sembuh lebih besar. Solusi untuk mengatasi hal tersebut adalah
memanfaatkan machine learning untuk mengklasifikasi tingkat risiko seseorang
dalam terkena penyakit kanker paru-paru. Metode yang digunakan dalam penelitian
ini adalah K-Nearest Neighbor dan Random Forest. Algoritma K-Nearest Neighbor
dan Random Forest merupakan algoritma yang sering digunakan untuk melakukan
klasifikasi. Penelitian ini bertujuan untuk melakukan perbandingan antara kedua
algoritma tersebut dalam melakukan klasifikasi terhadap tingkat risiko seseorang
dalam terkena penyakit kanker paru-paru. Dari hasil penelitian ini, dapat
disimpulkan bahwa nilai akurasi yang dimiliki oleh K-Nearest Neighbor adalah
0.890 dan nilai akurasi Random Forest sebesar 0.933. Selain itu, nilai AUC yang
dihasilkan oleh K-Nearest Neighbor adalah 0.973 dan untuk algoritma Random
Forest adalah 0.991. Yang dapat disimpulkan bahwa Random Forest lebih unggul
dari K-Nearest Neighbor. / Lung cancer is a condition where there are cancer cells that develop
uncontrollably in the lung organ. Lung cancer has the highest mortality rate of all
cancer deaths and is the leading cause of cancer deaths in men. Symptoms of lung
cancer are difficult to detect in the early stages, and can only be detected when it
enters the advanced stages. Therefore, it is important to be able to do early
detection of lung cancer so that the chances of recovery are greater. The solution
to overcome this is to utilize machine learning to classify a person's risk level for
lung cancer. The methods used in this research are K-Nearest Neighbor and
Random Forest. K-Nearest Neighbor and Random Forest algorithms are
algorithms that are often used for classification. This research aims to make a
comparison between the two algorithms in classifying a person's risk level for lung
cancer. From the results of this study, it can be concluded that the accuracy value
owned by K-Nearest Neighbor is 0.890 and the accuracy value of Random Forest
is 0.933. In addition, the AUC value generated by K-Nearest Neighbor is 0.973 and
for the Random Forest algorithm is 0.991. Which can be concluded that Random
Forest is superior to K-Nearest Neighbor.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Lim, Derrick Devin NIM03081200023 derricklim.ddl@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Pangaribuan, Jefri Junifer NIDN0130108901 jefri.pangaribuan@uph.edu |
Uncontrolled Keywords: | Kanker paru-paru; K-Nearest Neighbor; Random Forest |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems |
Depositing User: | Derrick Devin Lim Lim |
Date Deposited: | 06 Feb 2024 03:29 |
Last Modified: | 06 Feb 2024 03:29 |
URI: | http://repository.uph.edu/id/eprint/61530 |