Wijaya, Robert (2024) Analisis sentimen komentar Universitas Pelita Harapan pada TikTok menggunakan metode K-Nearest Neighbor. Bachelor thesis, Universitas Peliita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (29kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (321kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (749kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (839kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (181kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (583kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
Abstract
Di era digital yang sedang berkembang, media sosial, khususnya TikTok, telah
menjadi platform penting untuk berbagi informasi dan komunikasi, termasuk oleh
institusi pendidikan seperti Universitas Pelita Harapan (UPH). Penggunaan TikTok di
UPH menghasilkan beragam komentar yang memerlukan pengelolaan efektif,
mendorong penelitian ini untuk mengembangkan analisis sentimen menggunakan
algoritma K-Nearest Neighbor (KNN). Penelitian ini bertujuan untuk mengatasi dua
masalah utama: menganalisa tingkat akurasi penggunaan algoritma K-Nearest
Neighbor dalam analisis sentimen terhadap kalimat komentar dan mengukur kinerja
algoritma K-Nearest Neighbor dalam menghitung hasil validasi pada kalimat
komentar. Penelitian ini menggunakan metode KNN dengan dataset berjumlah 1213
data dari tahun 2021 sampai 2023 yang memiliki kata kunci terkait UPH dari konten
platform TikTok. Penelitian ini dikelola dan dilakukan di Google Colab dengan
bahasa pemrograman python. Berdasarkan hasil data training dan data testing
didapatkan accuracy sebesar 91% dengan precision sebesar 93%, recall sebesar 91%
dan f-1 score sebesar 92%. Dari hasil performa algoritma KNN, dapat disimpulkan
metode KNN dapat mengklasifikasikan sentimen komentar.
/
In the evolving digital era, social media, particularly TikTok, has become a pivotal
platform for information sharing and communication, including by educational
institutions such as Universitas Pelita Harapan (UPH). The use of TikTok at UPH
has generated diverse comments that require effective management, prompting this
research to develop sentiment analysis using the K-Nearest Neighbor (KNN)
algorithm. This study aims to address two main issues: analyzing the accuracy of the
K-Nearest Neighbor algorithm in sentiment analysis of comment sentences and
measuring the performance of the K-Nearest Neighbor algorithm in calculating
validation results on comment sentences. This research employs the KNN method
with a dataset of 1213 entries from 2021 to 2023 containing keywords related to
UPH from TikTok platform content. The study is managed and conducted on Google
Colab using the Python programming language. Based on the results of training and
testing data, an accuracy of 91% is obtained, with precision at 93%, recall at 91%,
and an F-1 score of 92%. From the performance of the KNN algorithm, it can be
concluded that the KNN method can classify sentiment in comments.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Wijaya, Robert NIM03082200011 robertwijaya1033@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Suwandhi, Albert NIDN0117088202 albert.suwandhi@lecturer.uph.edu |
Uncontrolled Keywords: | KNN; TikTok; UPH |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Robert Wijaya |
Date Deposited: | 07 Feb 2024 08:11 |
Last Modified: | 07 Feb 2024 08:11 |
URI: | http://repository.uph.edu/id/eprint/61646 |