Vincent, Vincent (2023) Penerapan algoritma k-nearest neighbor untuk prediksi penjualan keramik pada toko Mulia Keramik. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (62kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (189kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (893kB) | Preview
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (461kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (304kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (396kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Data memiliki peran penting bagi perusahaan yang salah satunya adalah
sebagai alat pembuat keputusan. Toko Mulia Keramik tidak memanfaatkan data
penjualan dengan baik sehingga muncul beberapa masalah yaitu tidak mampu
memaksimalkan penjualan karena terdapat barang yang kehabisan stok dan stok
barang yang tidak laku bertambah sehingga membutuhkan waktu yang lama untuk
menghabiskan stok. Metode yang dibutuhkan untuk menyelesaikan masalah adalah
data mining untuk memprediksi penjualan keramik setiap bulan.
Metode data mining yang digunakan adalah algoritma K-Nearest Neighbor
dengan metrik Eucldiean Distance untuk mencari tahu apakah keramik termasuk
kategori laris atau tidak laris. Jumlah data yang digunakan yaitu 30 data terdiri dari
24 data training dan 6 data testing.
Hasil penelitian keramik bernama Patricia dengan menggunakan nilai K=7
menghasilkan confusion matrix yaitu satu True Positive dan lima True Negative.
Akurasi model K-Nearest Neighbor yang didapatkan setelah menguji kinerja model
tersebut adalah 100%. Kinerja model K-Nearest Neighbor sangat bagus sehingga
model ini cocok untuk memprediksi tingkat penjualan keramik dalam satu bulan
dan dapat membantu toko untuk membuat keputusan. / Data plays an important role for companies, one of them is as a decision
making tool. Mulia Keramik did not utilize the sales data properly so there were
some problems arise, namely not able to maximize sales because there are items
that are out of stock and items that are not selling well increase and will lead to
longer time to empty the stock. The method needed to solve the problem is data
mining to predict tile sales in every month.
The data mining method uses the K-Nearest Neighbor algorithm with
Euclidean Distance metric to find out whether the tiles belong to sold well or not
sold well category. This study uses 30 data consisting of 24 training data and 6
testing data.
The result of the Patricia tile study using the K value of 7 produced a
confusion matrix of one True Positive and five True Negative. The accuracy of the
K-Nearest Neighbor model acquired after testing the performance is 100%. The
performance of K-Nearest Neighbor model produced great result that this model is
suitable to predict the rate of tile sales in a month and can help the store to make
decisions.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Vincent, Vincent 03082190036 vincentchandra00@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Pangaribuan, Jefri Junifer NIDN0130108901 jefri.pangaribuan@uph.edu |
Uncontrolled Keywords: | keramik; K-Nearest Neighbor; Euclidean Distance; confusion matrix. |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Vincent Vincent |
Date Deposited: | 09 Feb 2024 08:48 |
Last Modified: | 09 Feb 2024 08:48 |
URI: | http://repository.uph.edu/id/eprint/61649 |