Wendy, Calvin (2024) Perbandingan analisis sentimen ulasan aplikasi ajaib kripto menggunakan metode naive bayes dan k-nearest neighbour. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (15kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (271kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (551kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (631kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (917kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (214kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (457kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Perkembangan yang terjadi di bidang investasi membuat masyarakat tertarik untuk
melakukan investasi. Platform yang sering dipakai adalah aplikasi ajaib kripto pada
Google Play Store. Calon pengguna melihat ulasan aplikasi, yang dibuat
berdasarkan pendapat pengguna dan digunakan sebagai pertimbangan sebelum
memutuskan menggunakan aplikasi tersebut. Sehingga diperlukan analisis data.
Salah satu cara menganalisis data disebut analisis sentimen. Terdapat banyak sekali
metode yang dapat digunakan untuk analisis sentimen. Sehingga penulis
menggunakan metode Naive Bayes dan K-Nearest Neighbor untuk mengetahui
metode yang lebih akurat. Data yang diambil untuk penelitian ini merupakan ulasan
dari aplikasi ajaib kripto tersebut yang dikumpulkan dari tahun 2022 sampai 2024
dengan data sebanyak 4784. Dataset melalui tahapan pembagian data dengan
menggunakan k-fold cross validation dengan k=5, kemudian tahapan
preprocessing, transformasi TF-IDF, melatih model Naive Bayes dan KNN dengan
data latih. Model tersebut kemudian dicoba pada data uji. Hasilnya adalah metode
Naïve Bayes memberikan tingkat akurasi sebesar 82%, presisi sebesar 83%, recall
sebesar 98% dan f1-score sebesar 90%. Sedangkan metode K-Nearest Neighbor
memberikan tingkat akurasi sebesar 80%, presisi sebesar 84%, recall sebesar 94%
dan f1-score sebesar 89%. Kesimpulan dari penelitian ini adalah metode Naïve
Bayes memiliki tingkat akurasi yang lebih baik dibandingkan metode K-Nearest
Neighbor. / Developments that occur in the investment sector make people interested in
investing. The platform that is often used is the crypto magic application on the
Google Play Store. Potential users see app reviews, which are based on user
opinions and used as consideration before deciding to use the app. So data analysis
is needed. One way of analyzing data is called sentiment analysis. There are many
methods that can be used for sentiment analysis. So the author uses the Naive Bayes
and K-Nearest Neighbor methods to find out a more accurate method. The data
taken for this study is a review of the crypto magic application collected from 2022
to 2024 with 4784 data. Dataset through the stages of data division using k-fold
cross validation with k=5, then the preprocessing stage, TF-IDF transformation,
training Naive Bayes and KNN models with training data. The model was then
tested on test data. The result is that the Naïve Bayes method provides an accuracy
rate of 82%, precision of 83%, recall of 98% and an f1-score of 90%. While the K�Nearest Neighbor method provides an accuracy rate of 80%, precision of 84%,
recall of 94% and f1-score of 89%. The conclusion of this study is that the Naïve
Bayes method has a better level of accuracy than the K-Nearest Neighbor method.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Wendy, Calvin NIM03082200010 calvinwendi.002cw@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Maulana, Ade NIDN0317049201 ade.maulana@lecturer.uph.edu |
Uncontrolled Keywords: | k-nearest neighbor; naive bayes; analisis sentimen; ajaib kripto |
Subjects: | Q Science > Q Science (General) Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Calvin Wendy |
Date Deposited: | 09 Aug 2024 07:05 |
Last Modified: | 09 Aug 2024 07:05 |
URI: | http://repository.uph.edu/id/eprint/64737 |