Kevin, Kevin (2024) Analisis sentimen ulasan aplikasi traveloka pada app marketplace menggunakan DistilBERT. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (33kB) | Preview
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (57kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (404kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (308kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (286kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (679kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (738kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (618kB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (264kB)
Preview
Blbliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (273kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Traveloka merupakan sebuah platform terkenal di Indonesia yang menyediakan layanan pemesanan tiket pesawat, kereta api, hotel, dan lain-lain. Di era digital saat ini, aplikasi perjalanan seperti Traveloka telah menjadi aplikasi bagi banyak individu untuk merencanakan dan memesan perjalanan. Sebagai platform perjalanan terkemuka di Indonesia, Traveloka mendapatkan banyak umpan balik pengguna dalam bentuk ulasan, yang mencakup aspek seperti kualitas layanan dan pengalaman pengguna. Penelitian ini menganalisa sentimen ulasan pelanggan pada aplikasi Traveloka menggunakan model DistilBERT dan berfokus pada pengembangan model analisis sentimen ulasan aplikasi Traveloka di app marketplace untuk memahami kepuasan pelanggan dalam menggunakan aplikasi Traveloka dan mengidentifikasi potensi peningkatan fitur layanan Traveloka. Metodologi yang dilakukan termasuk pengumpulan data dari App Store dan Google Play, pra-pemrosesan data, pemisahan data, pemodelan pembelajaran mesin dengan BERT, evaluasi performa model, dan analisis performa model. Jumlah dataset setelah proses tersebut adalah sebanyak 7.149 data. Evaluasi performa model yang dilakukan menunjukkan model analisis yang dikembangkan memiliki akurasi sebesar 70,21% menggunakan confusion matrix. Hal ini menunjukkan model mampu mengklasifikasikan sentiment ulasan dengan cukup baik. / Traveloka is a well-known platform in Indonesia that provides services for booking flights, trains, hotels, and more. In the current digital era, travel apps like Traveloka have become essential tools for individuals to plan and book their trips. As a leading travel platform in Indonesia, Traveloka receives extensive user feedback in the form of reviews, covering aspects such as service quality and user experience. This research analyzes customer review sentiments on the Traveloka app using the DistilBERT model. It focuses on developing a sentiment analysis model for Traveloka app reviews in app marketplaces to understand customer satisfaction in using the Traveloka app and identify potential enhancements to Traveloka's service features. The methodology includes data collection from the App Store and Google Play, data preprocessing, data splitting, machine learning modeling with BERT, model performance evaluation, and performance analysis. After these processes, the dataset consists of 7,149 entries. The model performance evaluation carried out shows that the analytical model developed has an accuracy of 70.21% using the confusion matrix. This shows that the model is able to classify review sentiment quite well.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Kevin, Kevin NIM03082200004 912kevinpai@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Samosir, Feliks Victor Parningotan NIDN1319049302 feliks.parningotan@uph.edu |
Uncontrolled Keywords: | Analisis Sentimen; App Marketplace; DistilBERT; Traveloka; Ulasan Pengguna |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Kevin Kevin |
Date Deposited: | 10 Aug 2024 15:08 |
Last Modified: | 10 Aug 2024 15:08 |
URI: | http://repository.uph.edu/id/eprint/64810 |