Prediksi harga game pada platform steam menggunakan metode arima

Fabiean, Fabiean (2024) Prediksi harga game pada platform steam menggunakan metode arima. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (26kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (315kB)
[thumbnail of Chapter1] Text (Chapter1)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (520kB)
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (865kB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (518kB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (185kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (192kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

Penelitian ini memiliki tujuan untuk memprediksi perubahan harga game pada platform Steam dengan menggunakan metode Autoregressive Integrated Moving Average(ARIMA). Untuk mempermudah penelitian, akan dipilih satu game yang ada pada Steam yaitu game “Monster Hunter: World”. Data diperoleh dari website SteamDB. Data terdiri dari tanggal terjadinya perubahan harga, harga game pada tanggal terjadi diskon, dan harga terendah game pada tanggal terjadinya diskon. Data kemudian diproses untuk memastikan validitas dan stationeritasnya. Setelah itu, model ARIMA diterapkan terhadap data dan performanya dievaluasi dengan Mean Absolute Error (MAE) dan Mean Absolute Percentage Error (MAPE). Hasil MAPE 17% menunjukkan bahwa model ARIMA dapat dipakai untuk memprediksi harga game pada platform Steam dengan bagus./ This research aims to predict game price changes on Steam using Autoregressive Integrated Moving Average (ARIMA) method. To simplify this research, one game “Monster Hunter: World” will be selected for the purpose of this research. Data is obtained through SteamDB website. The data consists of price changes, date of price changes, and lowest recorded price. The data is then processed to ensure its validity and. An ARIMA model is then fitted to it and its performance are then evaluated using Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The result of MAPE evaluation is 17% which indicates that ARIMA model is well suited to predict game changes in Steam.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Fabiean, Fabiean
NIM03082190003
lienandafabiean@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Pangaribuan, Jefri Junifer
NIDN0130108901
jefri.pangaribuan@uph.edu
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics
Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics
Depositing User: Fabiean Fabiean
Date Deposited: 25 Feb 2025 03:32
Last Modified: 25 Feb 2025 03:32
URI: http://repository.uph.edu/id/eprint/67166

Actions (login required)

View Item
View Item