Ramadhan, Sinar Bayu (2024) Enhancing facial expression recognition: leveraging mobilnetv3 for periocular analysis. Masters thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
1.[FINAL] File Tesis - Sinar Bayu Ramadhan-Ti_SINAR BAYU RAMADHAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (150kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
2.[FINAL] File Tesis - Sinar Bayu Ramadhan-Ab_SINAR BAYU RAMADHAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (370kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
3.[FINAL] File Tesis - Sinar Bayu Ramadhan-To_SINAR BAYU RAMADHAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (507kB)
![Chapter 1 [thumbnail of Chapter 1]](http://repository.uph.edu/style/images/fileicons/text.png)
4.[FINAL] File Tesis - Sinar Bayu Ramadhan-Ch_SINAR BAYU RAMADHAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 2 [thumbnail of Chapter 2]](http://repository.uph.edu/style/images/fileicons/text.png)
5.[FINAL] File Tesis - Sinar Bayu Ramadhan-Ch_SINAR BAYU RAMADHAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 3 [thumbnail of Chapter 3]](http://repository.uph.edu/style/images/fileicons/text.png)
6.[FINAL] File Tesis - Sinar Bayu Ramadhan-Ch_SINAR BAYU RAMADHAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 4 [thumbnail of Chapter 4]](http://repository.uph.edu/style/images/fileicons/text.png)
7.[FINAL] File Tesis - Sinar Bayu Ramadhan-Ch_SINAR BAYU RAMADHAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter 5 [thumbnail of Chapter 5]](http://repository.uph.edu/style/images/fileicons/text.png)
8.[FINAL] File Tesis - Sinar Bayu Ramadhan-Ch_SINAR BAYU RAMADHAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (290kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
10.[FINAL] File Tesis - Sinar Bayu Ramadhan-B_SINAR BAYU RAMADHAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (825kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
11.[FINAL] File Tesis - Sinar Bayu Ramadhan_A_SINAR BAYU RAMADHAN.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
With the increasing use of online meeting and virtual reality (VR) with all
its limitations, there is a growing need for new methods to understand user
behavior and emotions. Traditional methods for analyzing user emotions often
rely on facial expressions, typically focusing on the entire face.
On the other hand, recent research has begun to highlight the significance
of the periocular area as a valuable source of information for this purpose. This
study explores the effectiveness of utilizing the periocular area for facial
expression classification through neural network architectures, including variants
of MobileNet and EfficientNet. Training was conducted using the TFEID dataset,
and evaluation was performed using the Chinese Face dataset installed on mobile
devices. This research employed a transfer learning approach to assess the
performance of architectures on Android platforms. Metrics such as accuracy,
precision, recall, and F1-score were used to evaluate the effectiveness of each
model, revealing the potential of periocular features in enhancing facial
expression classification.
The findings of this study demonstrate the robustness of MobileNet
architectures in this domain, contributing to the field of expression recognition
systems. This research not only enhances understanding of user expressions in
virtual environments but also offers practical solutions for real-world applications,
paving the way for more effective interaction models in online and VR settings. / Seiring meningkatnya penggunaan ruang pertemuan daring dan virtual
reality (VR) dengan segala keterbatasannya, memunculkan adanya kebutuhan
baru akan metode yang dapat digunakan untuk memahami perilaku dan emosi
pengguna. Metode tradisional untuk menganalisis emosi pengguna sering kali
bergantung pada ekspresi wajah, yang biasanya berfokus pada seluruh wajah.
Di sisi lain, penelitian baru-baru ini mulai menyoroti pentingnya area
periokular sebagai sumber informasi penting untuk kebutuhan tersebut. Penelitian
ini mengeksplorasi keefektifan pemanfaatan area periokular untuk klasifikasi
ekspresi wajah melalui arsitektur jaringan saraf, antara lain varian MobileNet dan
EfficientNet. Pelatihan dilakukan dengan memanfaatkan dataset TFEID, dan
evaluasi dilakukan dengan menggunakan dataset Chinese Face yang dipasang
pada perangkat seluler. Penelitian ini menggunakan pendekatan transfer learning
untuk menilai kinerja arsitektur pada platform Android. Metrik seperti akurasi,
presisi, recall, dan F1-score digunakan untuk mengevaluasi keefektifan setiap
model, yang mengungkap potensi fitur periokular dalam meningkatkan klasifikasi
ekspresi wajah.
Temuan dalam penelitian ini menunjukkan ketangguhan arsitektur
MobileNet dalam domain ini, memberikan kontribusi dalam bidang sistem
pengenalan ekspresi. Penelitian ini tidak hanya meningkatkan pemahaman tentang
ekspresi pengguna di lingkungan virtual, tetapi juga menawarkan solusi praktis
untuk aplikasi dunia nyata, membuka jalan bagi model interaksi yang lebih efektif
dalam pengaturan ruang daring dan VR.
Item Type: | Thesis (Masters) |
---|---|
Creators: | Creators NIM Email ORCID Ramadhan, Sinar Bayu NIM01679220015 UNSPECIFIED UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Hareva, David Habsara NIDN0316037206 UNSPECIFIED |
Uncontrolled Keywords: | Periokular ; MobileNet ; EfficientNetV2 ; TFEID ; Chinese Face ; Pengenalan Ekspresi |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7885-7895 Computer engineering. Computer hardware |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics |
Depositing User: | Phillips Iman Heri Wahyudi |
Date Deposited: | 22 Feb 2025 06:53 |
Last Modified: | 22 Feb 2025 06:53 |
URI: | http://repository.uph.edu/id/eprint/67182 |