Optimalisasi orientasi pada 3D printer: analisis perbandingan NSGA-II dengan kombinasi NSGA-II dan QLEARNING

Bilowo, Gidon (2024) Optimalisasi orientasi pada 3D printer: analisis perbandingan NSGA-II dengan kombinasi NSGA-II dan QLEARNING. Masters thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
halaman Judul_Gidon Bilowo 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (259kB)
[thumbnail of Abstract] Text (Abstract)
halaman Abstrak_Gidon Bilowo 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (664kB)
[thumbnail of ToC] Text (ToC)
Halaman Daftar Isi_Gidon Bilowo 1_watermark.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (725kB)
[thumbnail of Chapter 1] Text (Chapter 1)
BAB I_Gidon Bilowo 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 2] Text (Chapter 2)
BAB II_Gidon Bilowo 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (5MB)
[thumbnail of Chapter 3] Text (Chapter 3)
BAB III_Gidon Bilowo 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 4] Text (Chapter 4)
BAB IV_Gidon Bilowo 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB)
[thumbnail of Chapter 5] Text (Chapter 5)
BAB V_Gidon Bilowo 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (418kB)
[thumbnail of Bibliography] Text (Bibliography)
Daftar Pustaka_Gidon Bilowo 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Appendices] Text (Appendices)
Lampiran (Appendices)_Gidon Bilowo 1_watermark.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)

Abstract

This study aims to optimize the orientation of 3D printing to minimize support material, reduce printing time, and improve surface quality. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to generate a Pareto front that represents the trade-offs between conflicting objectives in multi-objective optimization. However, NSGA-II has limitations in exploring the solution space and tends to stagnate in local optima when parameters such as crossover and mutation probabilities are applied statically. To address this issue, NSGA-II is integrated with Q-Learning to dynamically adjust algorithm parameters based on rewards. In the initial stages, Q-Learning enhances population diversity for broader exploration, while in the later stages, it focuses on exploiting solutions close to the Pareto front. The results show that the combination of NSGA-II and Q-Learning improves the quality of the Pareto front compared to standalone NSGA-II. Experiments demonstrate efficiency improvements across all objective functions: support material (2.1%), printing time (3.8%), and surface roughness (1.9%). Validation using slicer software confirms that the generated Pareto-optimal solutions are relevant and practically applicable in 3D printing technology based on Fused Deposition Modeling (FDM). This study contributes to the development of multi-objective optimization methods combining NSGA-II and Q-Learning in the context of additive manufacturing. By leveraging the principle of Pareto optimality, this approach provides a more effective solution to balance material savings, time efficiency, and print quality. / Penelitian ini bertujuan untuk mengoptimalkan orientasi pencetakan 3D guna meminimalkan material penopang, mengurangi waktu cetak, dan meningkatkan kualitas permukaan. Algoritma Non-dominated Sorting Genetic Algorithm II (NSGA-II) digunakan untuk menghasilkan Pareto front, yang mencerminkan trade-off antara tujuan yang saling bertentangan dalam optimalisasi multiobjektif. Namun, NSGA-II memiliki keterbatasan dalam eksplorasi ruang solusi dan cenderung stagnan pada solusi lokal ketika parameter seperti probabilitas crossover dan mutasi diterapkan secara statis. Untuk mengatasi hal ini, NSGA-II diintegrasikan dengan Q-Learning guna menyesuaikan parameter algoritma secara dinamis berdasarkan reward. Pada tahap awal, Q-Learning meningkatkan diversitas populasi untuk eksplorasi yang lebih luas, sedangkan pada tahap akhir, fokus diarahkan pada eksploitasi solusi yang mendekati Pareto front. Hasil penelitian menunjukkan bahwa kombinasi NSGA-II dan Q-Learning mampu meningkatkan kualitas Pareto front dibandingkan NSGA-II murni. Uji coba menunjukkan peningkatan efisiensi pada semua fungsi objektif: material penopang (2,1%), waktu pencetakan (3,8%), dan kekasaran permukaan (1,9%). Validasi menggunakan perangkat lunak slicer mengonfirmasi bahwa solusi Pareto-optimal yang dihasilkan relevan dan dapat diterapkan dalam teknologi cetak 3D berbasis Fused Deposition Modeling (FDM). Penelitian ini memberikan kontribusi pada pengembangan metode optimalisasi multiobjektif berbasis kombinasi algoritma NSGA-II dan Q-learning dalam konteks manufaktur aditif. Dengan memanfaatkan prinsip Pareto optimality, pendekatan ini menawarkan solusi yang lebih efektif untuk menyeimbangkan penghematan material, efisiensi waktu, dan kualitas hasil cetak.
Item Type: Thesis (Masters)
Creators:
Creators
NIM
Email
ORCID
Bilowo, Gidon
NIM01679220012
gidon.bilowo@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Hardjono, Benny
NIDN0404086401
UNSPECIFIED
Uncontrolled Keywords: NSGA-II ; Pareto Front ; Q-Learning ; FDM ; Optimalisasi Multiobjektif ; Orientasi 3D Printing
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7885-7895 Computer engineering. Computer hardware
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Depositing User: Phillips Iman Heri Wahyudi
Date Deposited: 22 Feb 2025 09:15
Last Modified: 22 Feb 2025 09:15
URI: http://repository.uph.edu/id/eprint/67188

Actions (login required)

View Item
View Item