Pratama, Theodorus (2024) Pendekatan prediksi untuk tingkat kompetensi mahasiswa universitas menggunakan random forest dan pythagorean tree. Masters thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (89kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (310kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (511kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (825kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (926kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (830kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (183kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (532kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
This study aims to predict university students' competency levels based on
their final project scores and supporting course grades using a machine learning�based approach. The method applied involves the Random Forest algorithm to build
a predictive model, along with Pythagorean Tree visualization techniques to
enhance the interpretability of the prediction results. The dataset used consists of
final project scores and supporting course grades of Universitas Pelita Harapan
students, processed through preprocessing steps such as data cleaning,
normalization, and feature transformation.
The Random Forest model was chosen for its ability to handle complex and
multivariable data, producing accurate predictions by leveraging the aggregation of
multiple decision trees. To improve the understanding of the analysis results,
Pythagorean Tree visualization was implemented, which illustrates the contribution
of each feature in the model's decision-making process.
The research findings indicate that the Random Forest algorithm successfully
produced predictions with reasonably good accuracy, as measured by an R-squared
(R²) value of 0.346. Additionally, the model demonstrated a Mean Square Error
(MSE) of 626,355.437, a Root Mean Square Error (RMSE) of 791.426, a Mean
Absolute Error (MAE) of 569.958, and a Mean Absolute Percentage Error (MAPE)
of 24.5%. Moreover, the Pythagorean Tree visualization provided an intuitive
representation of how attributes such as average grades and categories of final
projects and supporting courses influence students' competency levels. This
visualization enables academic stakeholders to identify significant patterns within
the data, supporting more strategic decision-making in designing educational
policies. / Penelitian ini bertujuan untuk memprediksi tingkat kompetensi mahasiswa
universitas berdasarkan nilai tugas akhir dan mata kuliah pendukung mereka
dengan menggunakan pendekatan berbasis machine learning. Metode yang
diterapkan adalah algoritma Random Forest untuk membangun model prediksi,
serta visualisasi dengan teknik Pythagorean tree guna meningkatkan
interpretabilitas hasil prediksi. Dataset yang digunakan mencakup nilai tugas akhir
dan mata kuliah pendukung mahasiswa Universitas Pelita Harapan, yang diolah
melalui tahapan pra-pemrosesan seperti pembersihan data, normalisasi, dan
transformasi fitur.
Model Random forest digunakan karena kemampuannya dalam menangani
data yang kompleks dan multivariabel, menghasilkan prediksi yang akurat dengan
memanfaatkan penggabungan banyak pohon keputusan. Untuk meningkatkan
pemahaman terhadap hasil analisis, visualisasi Pythagorean tree diterapkan, yang
memperlihatkan kontribusi setiap fitur dalam pengambilan keputusan model.
Hasil penelitian menunjukkan bahwa algoritma Random forest berhasil
menghasilkan prediksi dengan akurasi yang cukup baik, yang diukur melalui nilai
R-squared (R²) sebesar 0.346. Selain itu, model ini memiliki Mean Square Error
(MSE) sebesar 626,355.437, Root Mean Square Error (RMSE) sebesar 791.426,
Mean Absolute Error (MAE) sebesar 569.958, dan Mean Absolute Percentage
Error (MAPE) sebesar 24.5%. Selain itu, visualisasi Pythagorean tree memberikan
gambaran intuitif mengenai bagaimana atribut-atribut seperti nilai rata-rata dan
kategori tugas akhir dan mata kuliah pendukung berpengaruh terhadap tingkat
kompetensi mahasiswa. Visualisasi ini memungkinkan pihak akademik untuk
mengenali pola signifikan dalam data, mendukung pengambilan keputusan yang
lebih strategis dalam merancang kebijakan pendidikan.
Item Type: | Thesis (Masters) |
---|---|
Creators: | Creators NIM Email ORCID Pratama, Theodorus NIM01679230005 theodorus16@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Murwantara, I Made NIDN0302057305 made.murwantara@uph.edu |
Uncontrolled Keywords: | kompetensi mahasiswa ; random forest ; pythagorean tree ; pembelajaran mesin ; prediksi akademik ; visualisasi data ; analisis pendidikan |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics |
Depositing User: | Theodorus Pratama |
Date Deposited: | 01 Mar 2025 01:03 |
Last Modified: | 01 Mar 2025 01:03 |
URI: | http://repository.uph.edu/id/eprint/67462 |