TABLE OF CONTENTS

COVER	R	
ORIGI	NALITY STATEMENT OF THE THESIS	
THESIS	S SUPERVISOR'S APPROVAL	
THESIS	S EXAMINATION COMMITTEE	
ABSTR	ACT	v
ABSTR	AK	vi
ACKN(OWLEDGEMENTS	vii
TABLE	OF CONTENTS	ix
LIST O	F FIGURES	xi
LIST O	F TABLES	xiii
LIST O	F ABBREVIATIONS	xiv
СНАРТ	TER I INTRODUCTION	1
1.1	Background	1
1.2	Problem Identification	3
1.3	Study Limitations	3
1.4	Formulation of the Problems	3
1.6	Systematics of the Study	4
СНАРТ	TER II THEORETICAL FRAMEWORK	5
2.1	Uroflowmetry	5
2.1.	1 Performing The Test	6
2.1.	2 Reporting a Test Result	10
2.1.	3 Interpretation	11
2.2	Mobile Sonouroflowmetry	
2.3	Machine Learning	18

	2.3.1 Uroflowmetry and Machine Learning	20
	2.3.2 Machine Learning Mechanism	21
	2.3.3 Supervised and Unsupervised Machine Learning	23
	2.3.4 Artificial Neural Networks	25
CH	IAPTER III METHOD	28
	3.1 Study Design	28
	3.2 Inclusion and Exclusion Criteria	28
	3.2.1 Inclusion Criteria	28
	3.2.2 Exclusion Criteria	28
	3.3 Data Collection	28
	3.3.1. Informed Consent	28
	3.3.2. Data Collection	29
	3.4 Data Analysis	29
	3.5 Operational Definition	30
	3.6 Research Roadmap	31
CH	IAPTER 4 RESULT AND DISCUSSION	33
	4.1 Sound signal processing	34
	4.1.1 Cropping and filtering	34
	4.1.2 Splitting into frames	35
	4.1.3 Calculating the sound energy	35
	4.1.4 Estimation of Flow Parameters	35
	4.2 Image analytics by visual programming	43
	4.3 Interactive data visualizations	50
	4.4 Access to different image embedders	51
CH	IAPTER 5 CONCLUSION	54
RF	FERENCES	

LIST OF FIGURES

Figure 1. The factors that determine flow function are the bladder (detrusor)
contraction and the state of the outlet. Several processes (listed on the right) may
hamper the free flow of urine
Figure 2. A visit to the flow clinic should be a chance to measure a few voids so
that the effect of anxiety often encountered with the first void (left) can be excluded
by focussing on voids where the patient was more relaxed and better prepared
(right)
Figure 3. Example of a trace that provides valuable information despite the small
voided volume because the maximum flow rate was reasonable
Figure 4. A standard reporting sheet for a free flow rate appointment. It displays the
flow pattern with clarity, key parameters including the voided and
postvoid-volumes (blue-arrows), and nomograms.[17]
Figure 5. Simulation Setting of Mobile Sonouroflowmetry
Figure 6. Sample artificial neural network architecture (not all weights are
shown)[38]
Figure 7. Research Roadmap
Figure 8. Sound extraction and Machine Learning Processing
Figure 9. Flow rate and corresponding sound energy curves. The graph on the left
depicts the flow rate over time, while the graph on the right depicts the associated
sound energy over time. The y-scales in the graphs have different units and have
been scaled to visually emphasize the closeness of the curve shapes
Figure 10. The process of transforming a sound source into a flow rate-time curve.
(1) The audio signal is divided into frames with a duration of $f_{\text{d}}.$ (2) Each frame's
(1) The audio signal is divided into frames with a duration of f_d . (2) Each frame's energy is calculated, and the energy-time curve is formed. This energy fluctuates in
energy is calculated, and the energy-time curve is formed. This energy fluctuates in
energy is calculated, and the energy-time curve is formed. This energy fluctuates in tandem with the flow rate and can be represented by a flow rate curve. (3) The

Figure 11. Unsupervised analysis of voiding sound images. The data analysis
workflow starts with importing 154 images from a local folder. The images can be
viewed in the Image Viewer widget (not shown) and are passed to the Image
Embedder, which was set to use Google's InceptionV3 deep network. We computed
the distances between the embedded images and presented them as a dendrogram
45
Figure 12. Hierarchical Clustering
Figure 13. MDS for selected hierarchical trees. Image distances were also given to
the multi-dimensional scaling widget (MDS)
Figure 14. Boxplots for (a) normal, (b) normal, and (c) abnormal voiding pattern
selected from hierarchical trees
Figure 15. This figure illustrates how a urologist may explore the data after
clustering—first focusing on the misclassified samples and looking at the images
and then selecting some of the best classified images as a point of reference for
further exploration

LIST OF TABLE

Table 1. Summary of characteristics from included studies	1:	5	
---	----	---	--

LIST OF ABBREVIATIONS

BPE Benign Prostate Enlargement

BPH Benign Prostate Hyperplasia

DSD Detrusor Sphincter Dyssynergia

E Energy

kHz kiloHertz

LUTD Lower Urinary Tract Dysfunction

LUTS Lower Urinary Tract Symptoms

MUT Mid-urethral tape

PVR Post-void residue

Qavg Q average (average flow rate)

Qmax Q maximum (maximum flow rate)

SUF Sonouroflowmetry

UF Uroflowmetry

VV Voided Volume