Tjonadi, Callista (2024) Analisis sentimen terhadap paylater menggunakan metode k-nearest neighbor (knn) pada media sosial x. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (32kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (351kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (593kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (650kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (221kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (813kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (7MB)
Abstract
Layanan paylater dengan gagasan “beli sekarang bayar nanti”, semakin populer di
Indonesia karena kepraktisannya dalam melakukan transaksi. Namun, peningkatan
penggunaannya menimbulkan kekhawatiran terkait perilaku impulsif dalam
berbelanja. Untuk memberikan gambaran lebih lanjut, penelitian ini
mengklasifikasikan sentimen masyarakat terhadap paylater menggunakan
algoritma K-Nearest Neighbor (KNN) pada media sosial X. Data dikumpulkan dari
media sosial X melalui data crawling dengan kata kunci “paylater” dari 1 Januari
2024 hingga 31 Agustus 2024, menghasilkan 17.366 data. Setelah data melalui
tahapan pre-processing yang meliputi case folding, normalization, tokenizing, stopword removal, dan stemming, data diolah menggunakan metode TF-IDF dan data
dibagi menjadi 80% data training dan 20% data testing. Untuk menangani
ketidakseimbangan kelas, digunakan juga metode SMOTE. Hasil penelitian
menunjukkan bahwa model KNN dengan nilai k = 2 memberikan akurasi tertinggi
sebesar 91,28%, dengan precision sebesar 95%, recall sebesar 94%, dan f1-score
sebesar 95% pada kelas negatif. Sementara pada kelas positif, diperoleh precision
sebesar 76%, recall sebesar 79%, dan f1-score sebesar 77%. Penelitian ini juga
menunjukkan kecenderungan sentimen masyarakat yang negatif terhadap layanan
paylater, dengan persentase sentimen negatif mencapai 84,5% dan positif sebesar
15,5%. / The paylater service, with the concept of “buy now, pay later”, has become
increasingly popular in Indonesia due to its convenience in facilitating
transactions. However, the rise in its usage raises concerns regarding impulsive
shopping behavior. Based on this issue, this study aims to classify public sentiment
toward paylater using the K-Nearest Neighbor (KNN) algorithm on social media
X. Data was collected from social media X through data crawling with the keyword
“paylater” from January 1 2024 to August 31 2024, resulting in 17,366 data. After
pre-processing steps, including case folding, normalization, tokenizing, stop-word
removal, and stemming, the data was processed using the TF-IDF method and split
into 80% training data and 20% testing data. To address class imbalance, the
SMOTE method was also applied. The study results show that the KNN model with
k = 2 achieved the highest accuracy of 91,28%, with a precision of 95%, recall of
94%, and an f1-score of 95% for the negative class. For the positive class, precision
was 76%, recall was 79%, and the f1-score was 77%. This study also shows a
tendency for negative public sentiment towards paylater, with 84,5% negative and
15,5% positive sentiment.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Tjonadi, Callista NIM03081210001 tjonadicallista@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Pangaribuan, Jefri Junifer NIDN0130108901 jefri.pangaribuan@uph.edu |
Uncontrolled Keywords: | Paylater; Analisis Sentimen; K-Nearest Neighbor; KNN; Media SosialX; TF-IDF; SMOTE |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Depositing User: | Callista Tjonadi |
Date Deposited: | 09 Apr 2025 07:21 |
Last Modified: | 09 Apr 2025 07:21 |
URI: | http://repository.uph.edu/id/eprint/68037 |