Hebert, Felix (2024) Analisis komparasi metode naïve bayes dan random forest dalam klasifikasi kualitas wine. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (36kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (189kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (602kB)
![Chapter 1 [thumbnail of Chapter 1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (458kB)
![Chapter 2 [thumbnail of Chapter 2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 3 [thumbnail of Chapter 3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (681kB)
![Chapter 4 [thumbnail of Chapter 4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter 5 [thumbnail of Chapter 5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (188kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (318kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Penelitian ini bertujuan untuk menganalisis akurasi dua metode klasifikasi,
yaitu Naïve Bayes (NB) dan Random Forest (RF), dalam mengklasifikasikan
kualitas wine. Data yang digunakan meliputi berbagai faktor yang mempengaruhi
kualitas wine, seperti kandungan asam, pH, dan atribut lainnya. Penelitian ini
membandingkan performa kedua metode dalam hal akurasi, presisi, recall, dan
misclassification error dengan menggunakan berbagai skenario pembagian data
(70:30, 80:20, dan 90:10). Hasil analisis menunjukkan bahwa Random Forest
memberikan kinerja yang lebih baik dibandingkan Naïve Bayes, dengan akurasi
tertinggi mencapai 91,95% pada skenario 90:10, sedangkan Naïve Bayes hanya
mencapai 84,55%. Selain itu, Random Forest juga menunjukkan presisi dan recall
yang lebih tinggi serta tingkat kesalahan yang lebih rendah dibandingkan Naïve
Bayes. Berdasarkan hasil ini, dapat disimpulkan bahwa Random Forest lebih
efektif dalam menangani kompleksitas data kualitas wine dan dapat
direkomendasikan sebagai metode yang lebih optimal untuk klasifikasi kualitas wine./This study aims to analyze the accuracy of two classification methods,
Naïve Bayes (NB) and Random Forest (RF), in classifying wine quality. The data
used includes various factors that influence wine quality, such as acid content,
pH, and other attributes. This research compares the performance of both
methods in terms of accuracy, precision, recall, and misclassification error using
different data splitting scenarios (70:30, 80:20, and 90:10). The analysis results
show that Random Forest performs better than Naïve Bayes, with the highest
accuracy reaching 91.95% in the 90:10 scenario, while Naïve Bayes only
achieves 84.55%. Additionally, Random Forest also shows higher precision and
recall, as well as a lower error rate compared to Naïve Bayes. Based on these
results, it can be concluded that Random Forest is more effective in handling the
complexity of wine quality data and can be recommended as the more optimal method for classifying wine quality.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Hebert, Felix NIM03082180062 felixhebert.fh@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Pangaribuan, Jefri Junifer NIDN0130108901 jefri.pangaribuan@uph.edu |
Uncontrolled Keywords: | Klasifikasi; kualitas wine; data mining; naïve bayes; random forest |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Felix Hebert |
Date Deposited: | 25 Apr 2025 01:33 |
Last Modified: | 25 Apr 2025 01:33 |
URI: | http://repository.uph.edu/id/eprint/68203 |