Analisis komparasi metode naïve bayes dan random forest dalam klasifikasi kualitas wine

Hebert, Felix (2024) Analisis komparasi metode naïve bayes dan random forest dalam klasifikasi kualitas wine. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (36kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (189kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (458kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (681kB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (188kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (318kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)

Abstract

Penelitian ini bertujuan untuk menganalisis akurasi dua metode klasifikasi, yaitu Naïve Bayes (NB) dan Random Forest (RF), dalam mengklasifikasikan kualitas wine. Data yang digunakan meliputi berbagai faktor yang mempengaruhi kualitas wine, seperti kandungan asam, pH, dan atribut lainnya. Penelitian ini membandingkan performa kedua metode dalam hal akurasi, presisi, recall, dan misclassification error dengan menggunakan berbagai skenario pembagian data (70:30, 80:20, dan 90:10). Hasil analisis menunjukkan bahwa Random Forest memberikan kinerja yang lebih baik dibandingkan Naïve Bayes, dengan akurasi tertinggi mencapai 91,95% pada skenario 90:10, sedangkan Naïve Bayes hanya mencapai 84,55%. Selain itu, Random Forest juga menunjukkan presisi dan recall yang lebih tinggi serta tingkat kesalahan yang lebih rendah dibandingkan Naïve Bayes. Berdasarkan hasil ini, dapat disimpulkan bahwa Random Forest lebih efektif dalam menangani kompleksitas data kualitas wine dan dapat direkomendasikan sebagai metode yang lebih optimal untuk klasifikasi kualitas wine./This study aims to analyze the accuracy of two classification methods, Naïve Bayes (NB) and Random Forest (RF), in classifying wine quality. The data used includes various factors that influence wine quality, such as acid content, pH, and other attributes. This research compares the performance of both methods in terms of accuracy, precision, recall, and misclassification error using different data splitting scenarios (70:30, 80:20, and 90:10). The analysis results show that Random Forest performs better than Naïve Bayes, with the highest accuracy reaching 91.95% in the 90:10 scenario, while Naïve Bayes only achieves 84.55%. Additionally, Random Forest also shows higher precision and recall, as well as a lower error rate compared to Naïve Bayes. Based on these results, it can be concluded that Random Forest is more effective in handling the complexity of wine quality data and can be recommended as the more optimal method for classifying wine quality.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Hebert, Felix
NIM03082180062
felixhebert.fh@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Pangaribuan, Jefri Junifer
NIDN0130108901
jefri.pangaribuan@uph.edu
Uncontrolled Keywords: Klasifikasi; kualitas wine; data mining; naïve bayes; random forest
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics
Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics
Depositing User: Felix Hebert
Date Deposited: 25 Apr 2025 01:33
Last Modified: 25 Apr 2025 01:33
URI: http://repository.uph.edu/id/eprint/68203

Actions (login required)

View Item
View Item