NUGRAHA, ZHILLAN ADRIAN (2024) Identifikasi anomali pada komputasi awan dengan pendekatan process mining : inductive miner dan alpha miner = Identification of anomaly in cloud computing with process mining approach: inductive miner and alpha miner. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (338kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (597kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chpater1 [thumbnail of Chpater1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (775kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (916kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (950kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (780kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (621kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
Abstract
Cloud computing systems play a vital role in large-scale data processing with high
flexibility. However, their complexity causes challenges in detecting anomalies that may
indicate system disruptions, security breaches, or process inefficiencies. Manual detection
becomes ineffective due to the large volume of log data. Therefore, this study applies a
Process Mining approach using Inductive Miner, Alpha Miner, and Conformance Analysis
to identify anomalies in cloud system logs.
This study begins with the collection of log data from open sources, followed by
preprocessing to ensure compatibility with process mining techniques. A process model is
then built using Inductive Miner and Alpha Miner to represent the system activity flow.
Furthermore, Conformance Analysis is used to evaluate the model's suitability to actual
execution, identifying deviation patterns that may be indicators of anomalies.
The results show that the combination of these three methods provides an in-depth
understanding of system activity patterns as well as anomaly detection based on process
path deviations and abnormal time gaps. Inductive Miner is proven effective in visualizing
process patterns comprehensively, while Alpha Miner is able to identify basic patterns
despite being sensitive to noise. Conformance Analysis reveals deviations between the
ideal model and actual execution, indicating bottlenecks and resource mismatches such as
disk I/O utilization and network traffic. These findings confirm that process mining can be
an effective tool in analyzing and optimizing cloud systems to improve operational
efficiency. / Sistem komputasi awan memainkan peran penting dalam pemrosesan data berskala
besar dengan fleksibilitas tinggi. Namun, kompleksitasnya menyebabkan tantangan dalam
mendeteksi anomali yang dapat mengindikasikan gangguan sistem, pelanggaran
keamanan, atau inefisiensi proses. Deteksi manual menjadi tidak efektif karena volume
data log yang besar. Oleh karena itu, penelitian ini menerapkan pendekatan Process Mining
menggunakan Inductive Miner, Alpha Miner, dan Conformance Analysis untuk
mengidentifikasi anomali dalam log sistem cloud.
Penelitian ini dimulai dengan pengumpulan data log dari sumber terbuka, diikuti
oleh preprocessing untuk memastikan kompatibilitas dengan teknik process mining. Model
proses kemudian dibangun menggunakan Inductive Miner dan Alpha Miner guna
merepresentasikan alur aktivitas sistem. Selanjutnya, Conformance Analysis digunakan
untuk mengevaluasi kesesuaian model dengan eksekusi aktual, mengidentifikasi pola
penyimpangan yang dapat menjadi indikator anomali.
Hasil penelitian menunjukkan bahwa kombinasi ketiga metode ini memberikan
pemahaman mendalam tentang pola aktivitas sistem serta deteksi anomali berbasis
penyimpangan jalur proses dan celah waktu yang tidak wajar. Inductive Miner terbukti
efektif dalam memvisualisasikan pola proses secara komprehensif, sementara Alpha Miner
mampu mengidentifikasi pola dasar meskipun sensitif terhadap noise. Conformance
Analysis mengungkap deviasi antara model ideal dan eksekusi aktual, menunjukkan adanya
bottleneck dan ketidaksesuaian sumber daya seperti disk I/O utilization dan network traffic.
Temuan ini menegaskan bahwa process mining dapat menjadi alat yang efektif dalam
analisis dan optimalisasi sistem cloud untuk meningkatkan efisiensi operasional.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID NUGRAHA, ZHILLAN ADRIAN NIM01082210010 zhillanadrian88@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Contributor Murwantara, I Made NIDN0302057304 made.murwantara@uph.edu |
Uncontrolled Keywords: | Process Mining, Inductive Miner, Alpha Miner, Conformance Analysis, Identifikasi Anomali, Komputasi Awan. |
Subjects: | T Technology > T Technology (General) |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | Magang Input |
Date Deposited: | 17 May 2025 02:15 |
Last Modified: | 17 May 2025 02:15 |
URI: | http://repository.uph.edu/id/eprint/68407 |