Analisis sentimen berbasis aspek: klasifikasi ulasan produk kecantikan dengan indobert

TUMANGGOR, GAVRILA LOUISE (2024) Analisis sentimen berbasis aspek: klasifikasi ulasan produk kecantikan dengan indobert. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title]
Preview
Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (166kB) | Preview
[thumbnail of Abstract]
Preview
Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (222kB) | Preview
[thumbnail of ToC]
Preview
Text (ToC)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (206kB) | Preview
[thumbnail of Chapter1]
Preview
Text (Chapter1)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (645kB) | Preview
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (438kB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (634kB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (158kB)
[thumbnail of Bibliography]
Preview
Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (256kB) | Preview
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

In the digital era, consumer reviews of products on e-commerce platforms have become a vital source of information for producers, sellers, and other consumers. However, extracting meaningful insights from the vast and diverse array of reviews requires an indepth analytical approach. A key challenge in analyzing reviews is understanding user sentiment toward specific aspects, such as product quality, seller service, and delivery performance, rather than merely evaluating overall opinions. To address this, an AspectBased Sentiment Analysis (ABSA) method is essential, enabling the extraction of relevant aspects from reviews and the accurate classification of sentiments associated with each aspect. This study proposes the implementation of the IndoBERT model to integrate the tasks of Aspect Extraction (AE) and Aspect Sentiment Classification (ASC) for beauty product reviews in Indonesian. IndoBERT was selected for its exceptional ability to comprehend the context of the Indonesian language. The research dataset consists of 10,000 product reviews categorized into negative, neutral, and positive sentiments based on review scores. The model is fine-tuned using hyperparameter configurations such as batch size and the number of epochs to enhance accuracy. The research stages include data preprocessing, aspect and sentiment labeling, model training, and performance evaluation. The expected outcome is a model capable of accurately extracting review aspects and classifying sentiments with a high level of confidence. The model implementation achieved an accuracy of 86% and an F1-score of 0.857, with a balanced accuracy of 88%. It demonstrated precise predictions for aspects such as "product" (confidence score 0.98), "seller" (1.00), and "delivery" (0.86). Testing revealed the model could process data at a rate of 33.173 samples per second and complete training in 1.5072 seconds per iteration. These results confirm the model's effectiveness in identifying aspects and sentiments in reviews, significantly contributing to aspect-based sentiment analysis in the Indonesian language while supporting improvements in product service quality and marketing strategies. / Dalam era digital, ulasan konsumen terhadap produk di platform e-commerce menjadi sumber informasi penting bagi produsen, penjual, dan konsumen lainnya. Namun, penggalian informasi dari ulasan yang sangat banyak dan beragam membutuhkan pendekatan analisis yang mendalam. Tantangan utama dalam menganalisis ulasan adalah memahami sentimen pengguna terhadap aspek spesifik, seperti kualitas produk, pelayanan penjual, dan pengiriman, bukan hanya sekadar opini secara keseluruhan. Untuk itu, dibutuhkan metode analisis sentimen berbasis aspek (Aspect-Based Sentiment Analysis/ABSA) yang mampu mengekstraksi aspek-aspek relevan dalam ulasan dan mengklasifikasikan sentimen yang terkandung pada setiap aspek secara akurat. Penelitian ini mengusulkan penerapan model IndoBERT untuk menggabungkan tugas Aspect Extraction (AE) dan Aspect Sentiment Classification (ASC) pada ulasan produk kecantikan berbahasa Indonesia. IndoBERT dipilih karena keunggulannya dalam memahami konteks bahasa Indonesia secara mendalam. Dataset penelitian mencakup 10.000 ulasan produk dengan kategori sentimen negatif, netral, dan positif berdasarkan skor ulasan. Model dioptimalkan menggunakan teknik fine-tuning dengan konfigurasi parameter seperti ukuran batch dan jumlah epoch yang disesuaikan untuk meningkatkan akurasi. Tahapan penelitian meliputi praproses data, pelabelan aspek dan sentimen, pelatihan model, dan evaluasi performa. Hasil akhir yang diharapkan adalah model yang mampu mengekstraksi aspek-aspek ulasan secara akurat dan memberikan klasifikasi sentimen dengan tingkat kepercayaan yang tinggi. Implementasi model menghasilkan akurasi 86% dan F1-score 0.857, dengan balanced accuracy mencapai 88%. Model juga menunjukkan kemampuan prediksi yang akurat pada aspek seperti "produk" (confidence score 0.98), "penjual" (1.00), dan "pengiriman" (0.86). Pengujian menunjukkan model dapat memproses data dengan kecepatan 33.173 sampel per detik dan menyelesaikan pelatihan dalam waktu 1.5072 detik per iterasi. Dengan hasil ini, model terbukti efektif dalam mengidentifikasi aspek dan sentimen ulasan, memberikan kontribusi penting bagi analisis sentimen berbasis aspek dalam bahasa Indonesia serta mendukung peningkatan kualitas layanan produk dan strategi pemasaran
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
TUMANGGOR, GAVRILA LOUISE
NIM0108210011
nonik.gavrila13@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Contributor
Samosir, Feliks V. P.
NIDN0319049302
feliks.parningotan@uph.edu
Subjects: T Technology > T Technology (General)
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Depositing User: Magang Input
Date Deposited: 17 May 2025 02:14
Last Modified: 17 May 2025 02:14
URI: http://repository.uph.edu/id/eprint/68409

Actions (login required)

View Item
View Item