ANDERSOON, ELVIO (2024) Penerapan algoritma content-based filtering dan collaborative filtering untuk rekomendasi tempat wisata berbasis optimasi rute = Implementation of content-based filtering and collaborative filtering algorithms for tourist attractions recommendation based on route optimization. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (74kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (183kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (201kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (197kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (258kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (774kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (118kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (245kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (9MB)
Abstract
Indonesia memiliki berbagai destinasi wisata yang kaya akan budaya dan keindahan
alam, namun sebagian besar destinasi tersebut kurang terekspos, terutama bagi wisatawan
yang mencari tempat wisata sesuai dengan preferensi mereka. Banyak destinasi wisata yang
terletak di daerah terpencil kurang dikenal dan sulit diakses oleh wisatawan. Permasalahan
ini memunculkan kebutuhan akan suatu sistem yang dapat membantu wisatawan
menemukan tempat wisata yang sesuai dengan minat mereka.
Dalam penelitian ini, penulis mengembangkan sebuah aplikasi berbasis web yang
dinamakan "Lokatravel". Aplikasi ini dirancang untuk merekomendasikan tempat wisata
lokal di Indonesia dengan menggunakan algoritma Content-Based Filtering dan
Collaborative Filtering serta mempermudah wisatawan dalam menemukan destinasi
wisata yang sesuai dengan minat mereka. Tujuan utama dalam penelitian ini adalah
mengevaluasi efektivitas kedua algoritma yaitu Content-based Filtering dan Collaborative
Filtering dalam memberikan rekomendasi yang relevan. Algoritma Content-Based
Filtering digunakan untuk memberikan rekomendasi tempat wisata berdasarkan kesamaan
konten tempat wisata dengan preferensi pengguna, sementara algoritma Collaborative
Filtering memanfaatkan data preferensi pengguna lain untuk merekomendasikan tempat
wisata. Selain itu, aplikasi ini juga menerapkan algoritma optimasi rute pada penentuan
rute terbaik bagi pengguna. Sistem ini dilengkapi dengan fitur optimasi rute yang
memanfaatkan Distance Matrix API dari Google Maps untuk menampilkan titik Lokasi
tempat wisata untuk pengguna.
Hasil implementasi menunjukkan bahwa aplikasi Lokatravel telah berfungsi sesuai
dengan tujuan yang direncanakan. Evaluasi kinerja model menggunakan beberapa metrik,
yaitu Mean Absolute Error (MAE), Mean Squared Error (MSE), R-squared (R²), dan
Precision. Hasil pengujian pada model Content-Based Filtering menunjukkan nilai MAE
sebesar 0.400, MSE sebesar 0.400, R² sebesar 0.705, dan Precision sebesar 0.800.
Sementara itu, pada model Collaborative Filtering, diperoleh nilai MAE sebesar 0.308,
MSE sebesar 0.127, dan Precision sebesar 0.605. Pengujian pengguna terhadap aplikasi
web menunjukkan bahwa aplikasi ini telah memenuhi tujuan yang direncanakan,
memberikan rekomendasi yang relevan dan dipersonalisasi. Penelitian ini menyimpulkan
bahwa kombinasi algoritma yang dihasilkan bahwa model memberikan rekomendasi yang
cukup akurat. Hasil kedua model ini dapat menjadi dasar untuk pengembangan lebih lanjut
pada meningkatkan terutama dalam hal kemampuan model kinerja pada aplikasi ini / Indonesia has various tourist destinations rich in culture and natural beauty, but
most of these destinations are under-exposed, especially for tourists looking for tourist
attractions according to their preferences. Many tourist destinations located in remote areas
are less well-known and difficult to access by tourists. This problem raises the need for a
system that can help tourists find tourist attractions that suit their interests.
In this study, the author developed a web-based application called "Lokatravel".
This application is designed to recommend local tourist attractions in Indonesia using
Content-Based Filtering and Collaborative Filtering algorithms and make it easier for
tourists to find tourist destinations that suit their interests. The main objective of this study
is to evaluate the effectiveness of both algorithms, namely Content-based Filtering and
Collaborative Filtering in providing relevant recommendations. The Content-Based
Filtering algorithm is used to provide recommendations for tourist attractions based on the
similarity of tourist attraction content with user preferences, while the Collaborative
Filtering algorithm utilizes other user preference data to recommend tourist attractions. In
addition, this application also applies a route optimization algorithm to determine the best
route for users. This system is equipped with a route optimization feature that utilizes the
Distance Matrix API from Google Maps to display tourist attraction location points for
users.
The implementation results show that the Lokatravel application has functioned
according to the planned objectives. The model performance evaluation uses several
metrics, namely Mean Absolute Error (MAE), Mean Squared Error (MSE), R-squared (R²),
and Precision. The test results on the Content-Based Filtering model show an MAE value
of 0.400, MSE of 0.400, R² of 0.705, and Precision of 0.800. Meanwhile, in the
Collaborative Filtering model, the MAE value is 0.308, MSE of 0.127, and Precision of
0.605. User testing of the web application shows that this application has met the planned
objectives, providing relevant and personalized recommendations. This study concludes
that the combination of algorithms produced that the model provides fairly accurate
recommendations. The results of these two models can be the basis for further development
in improving especially in terms of the performance model capabilities of this application.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID ANDERSOON, ELVIO NIM01082210020 elvioander3@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Contributor Lazarusli, Irene A. NIDN0317097501 irene.lazarusli@uph.edu |
Subjects: | T Technology > T Technology (General) |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | Magang Input |
Date Deposited: | 17 May 2025 02:14 |
Last Modified: | 17 May 2025 02:14 |
URI: | http://repository.uph.edu/id/eprint/68414 |