Penerapan algoritma content-based filtering dan collaborative filtering untuk rekomendasi tempat wisata berbasis optimasi rute = Implementation of content-based filtering and collaborative filtering algorithms for tourist attractions recommendation based on route optimization

ANDERSOON, ELVIO (2024) Penerapan algoritma content-based filtering dan collaborative filtering untuk rekomendasi tempat wisata berbasis optimasi rute = Implementation of content-based filtering and collaborative filtering algorithms for tourist attractions recommendation based on route optimization. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (74kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (183kB)
[thumbnail of Chapter1] Text (Chapter1)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (197kB)
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (258kB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (774kB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (118kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (245kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (9MB)

Abstract

Indonesia memiliki berbagai destinasi wisata yang kaya akan budaya dan keindahan alam, namun sebagian besar destinasi tersebut kurang terekspos, terutama bagi wisatawan yang mencari tempat wisata sesuai dengan preferensi mereka. Banyak destinasi wisata yang terletak di daerah terpencil kurang dikenal dan sulit diakses oleh wisatawan. Permasalahan ini memunculkan kebutuhan akan suatu sistem yang dapat membantu wisatawan menemukan tempat wisata yang sesuai dengan minat mereka. Dalam penelitian ini, penulis mengembangkan sebuah aplikasi berbasis web yang dinamakan "Lokatravel". Aplikasi ini dirancang untuk merekomendasikan tempat wisata lokal di Indonesia dengan menggunakan algoritma Content-Based Filtering dan Collaborative Filtering serta mempermudah wisatawan dalam menemukan destinasi wisata yang sesuai dengan minat mereka. Tujuan utama dalam penelitian ini adalah mengevaluasi efektivitas kedua algoritma yaitu Content-based Filtering dan Collaborative Filtering dalam memberikan rekomendasi yang relevan. Algoritma Content-Based Filtering digunakan untuk memberikan rekomendasi tempat wisata berdasarkan kesamaan konten tempat wisata dengan preferensi pengguna, sementara algoritma Collaborative Filtering memanfaatkan data preferensi pengguna lain untuk merekomendasikan tempat wisata. Selain itu, aplikasi ini juga menerapkan algoritma optimasi rute pada penentuan rute terbaik bagi pengguna. Sistem ini dilengkapi dengan fitur optimasi rute yang memanfaatkan Distance Matrix API dari Google Maps untuk menampilkan titik Lokasi tempat wisata untuk pengguna. Hasil implementasi menunjukkan bahwa aplikasi Lokatravel telah berfungsi sesuai dengan tujuan yang direncanakan. Evaluasi kinerja model menggunakan beberapa metrik, yaitu Mean Absolute Error (MAE), Mean Squared Error (MSE), R-squared (R²), dan Precision. Hasil pengujian pada model Content-Based Filtering menunjukkan nilai MAE sebesar 0.400, MSE sebesar 0.400, R² sebesar 0.705, dan Precision sebesar 0.800. Sementara itu, pada model Collaborative Filtering, diperoleh nilai MAE sebesar 0.308, MSE sebesar 0.127, dan Precision sebesar 0.605. Pengujian pengguna terhadap aplikasi web menunjukkan bahwa aplikasi ini telah memenuhi tujuan yang direncanakan, memberikan rekomendasi yang relevan dan dipersonalisasi. Penelitian ini menyimpulkan bahwa kombinasi algoritma yang dihasilkan bahwa model memberikan rekomendasi yang cukup akurat. Hasil kedua model ini dapat menjadi dasar untuk pengembangan lebih lanjut pada meningkatkan terutama dalam hal kemampuan model kinerja pada aplikasi ini / Indonesia has various tourist destinations rich in culture and natural beauty, but most of these destinations are under-exposed, especially for tourists looking for tourist attractions according to their preferences. Many tourist destinations located in remote areas are less well-known and difficult to access by tourists. This problem raises the need for a system that can help tourists find tourist attractions that suit their interests. In this study, the author developed a web-based application called "Lokatravel". This application is designed to recommend local tourist attractions in Indonesia using Content-Based Filtering and Collaborative Filtering algorithms and make it easier for tourists to find tourist destinations that suit their interests. The main objective of this study is to evaluate the effectiveness of both algorithms, namely Content-based Filtering and Collaborative Filtering in providing relevant recommendations. The Content-Based Filtering algorithm is used to provide recommendations for tourist attractions based on the similarity of tourist attraction content with user preferences, while the Collaborative Filtering algorithm utilizes other user preference data to recommend tourist attractions. In addition, this application also applies a route optimization algorithm to determine the best route for users. This system is equipped with a route optimization feature that utilizes the Distance Matrix API from Google Maps to display tourist attraction location points for users. The implementation results show that the Lokatravel application has functioned according to the planned objectives. The model performance evaluation uses several metrics, namely Mean Absolute Error (MAE), Mean Squared Error (MSE), R-squared (R²), and Precision. The test results on the Content-Based Filtering model show an MAE value of 0.400, MSE of 0.400, R² of 0.705, and Precision of 0.800. Meanwhile, in the Collaborative Filtering model, the MAE value is 0.308, MSE of 0.127, and Precision of 0.605. User testing of the web application shows that this application has met the planned objectives, providing relevant and personalized recommendations. This study concludes that the combination of algorithms produced that the model provides fairly accurate recommendations. The results of these two models can be the basis for further development in improving especially in terms of the performance model capabilities of this application.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
ANDERSOON, ELVIO
NIM01082210020
elvioander3@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Contributor
Lazarusli, Irene A.
NIDN0317097501
irene.lazarusli@uph.edu
Subjects: T Technology > T Technology (General)
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Depositing User: Magang Input
Date Deposited: 17 May 2025 02:14
Last Modified: 17 May 2025 02:14
URI: http://repository.uph.edu/id/eprint/68414

Actions (login required)

View Item
View Item