PENGEMBANGAN SISTEM DATA LOGGING UNTUK PEMANTAUAN SUHU DAN KELEMBAPAN BERBASIS INTERNET OF THINGS

Leonardi, Michael Truman (2025) PENGEMBANGAN SISTEM DATA LOGGING UNTUK PEMANTAUAN SUHU DAN KELEMBAPAN BERBASIS INTERNET OF THINGS. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title.pdf] Text
Title.pdf

Download (81kB)
[thumbnail of Abstract.pdf] Text
Abstract.pdf

Download (616kB)
[thumbnail of ToC.pdf] Text
ToC.pdf

Download (726kB)
[thumbnail of Chapter1.pdf] Text
Chapter1.pdf

Download (1MB)
[thumbnail of Chapter2.pdf] Text
Chapter2.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[thumbnail of Chapter3.pdf] Text
Chapter3.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[thumbnail of Chapter4.pdf] Text
Chapter4.pdf
Restricted to Registered users only

Download (3MB) | Request a copy
[thumbnail of Chapter5.pdf] Text
Chapter5.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[thumbnail of Chapter6.pdf] Text
Chapter6.pdf
Restricted to Registered users only

Download (404kB) | Request a copy
[thumbnail of Bibliography.pdf] Text
Bibliography.pdf

Download (323kB)
[thumbnail of Appendices.pdf] Text
Appendices.pdf
Restricted to Repository staff only

Download (11MB) | Request a copy

Abstract

Penelitian ini mengembangkan sistem data logging suhu dan kelembapan berbasis Internet of Things (IoT) menggunakan empat sensor BME280 yang terhubung ke mikrokontroler ESP8266. Data dikirim secara otomatis setiap 10 detik ke Google Sheets melalui koneksi Wi-Fi. Pengujian dilakukan dalam dua kategori lingkungan: ideal (<27 °C) dan non-ideal (≥27 °C), untuk mensimulasikan skenario penyimpanan. Evaluasi dilakukan berdasarkan pendekatan ISO/IEC Guide 98-3:2008 (GUM), dengan menghitung ketidakpastian gabungan dan ketidakpastian diperluas. Hasil pengujian menunjukkan ketidakpastian diperluas suhu (pada tingkat kepercayaan 95%) sebagai berikut: Sensor_01 sebesar ±1,160 °C (ideal) dan ±1,219 °C (non-ideal); Sensor_02 sebesar ±1,161 °C dan ±1,211 °C; Sensor_03 sebesar ±1,162 °C dan ±1,181 °C; serta Sensor_04 sebesar ±1,179 °C dan ±1,247 °C. Seluruh nilai ketidakpastian masih berada dalam batas yang dapat diterima untuk aplikasi pemantauan suhu lingkungan non-kritis. Sistem menunjukkan performa stabil dan akurat dalam kedua kondisi lingkungan. Untuk pengujian lebih lanjut, Sensor_01 juga diuji selama 11 jam secara kontinu di lapangan dan menunjukkan respons real-time terhadap fluktuasi suhu dan kelembapan. Sistem ini terbukti efisien, ekonomis, dan dapat diandalkan sebagai solusi pemantauan suhu dan kelembapan berbasis IoT. Disarankan untuk menyertakan pengujian ketidakpastian kelembapan pada pengembangan berikutnya guna mendapatkan karakterisasi sistem yang lebih komprehensif. / This study develops a temperature and humidity data logging system based on the Internet of Things (IoT), utilizing four BME280 sensors connected to an ESP8266 microcontroller. The sensor data is automatically transmitted every 10 seconds to Google Sheets via Wi-Fi connectivity. Testing was conducted under two environmental conditions: ideal (<27 °C) and non-ideal (≥27 °C), simulating storage scenarios. Evaluation was performed using the ISO/IEC Guide 98-3:2008 (GUM) framework by calculating combined and expanded uncertainties. The results showed the expanded uncertainty of temperature measurements (with 95% confidence level) as follows: Sensor_01 at ±1.160 °C (ideal) and ±1.219 °C (non-ideal); Sensor_02 at ±1.161 °C and ±1.211 °C; Sensor_03 at ±1.162 °C and ±1.181 °C; and Sensor_04 at ±1.179 °C and ±1.247 °C. All uncertainty values remain within accetable limits for non-critical environmental monitoring applications. The system demonstrated tables and accurate performance under both environmental conditions. Additionally, Sensor_01 was tested continuously for 11 hours in a field trial, showing real-time responsiveness to temperature and humidity fluctuations. The system is proven to be efficient, cost-effective, and reliable as an IoT-based monitoring solution. Future work is recommended to include uncertainty analysis of humidity measurements to achieve a more comprehensive system characterization.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Leonardi, Michael Truman
NIM01032180016
trumanleonardi@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Gracio, Mario
0323068601
mario.rhizma@uph.edu
Thesis advisor
Martoyo, Ihan
UNSPECIFIED
UNSPECIFIED
Uncontrolled Keywords: pemantauan suhu, pemantauan kelembapan, internet of things (IoT), mean absolute error (MAE), sensor bme280, esp8266, konektivitas wi-fi
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Electrical Engineering
Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Electrical Engineering
Depositing User: Michael Truman Leonardi
Date Deposited: 23 Jul 2025 04:19
Last Modified: 23 Jul 2025 04:19
URI: http://repository.uph.edu/id/eprint/69769

Actions (login required)

View Item
View Item