Salim, Michael (2025) Analisis sentimen popularitas drama queen of tears sebagai drama Korea terpopuler di tahun 2024 dengan menggunakan metode svm (support vector machine). Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (134kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (415kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (723kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (677kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (488kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (11MB)
Abstract
Drama Korea Queen of Tears berhasil meraih popularitas tinggi dan menjadi perbincangan luas di media sosial sepanjang tahun 2024. Penelitian ini bertujuan untuk menganalisis pola sentimen publik terhadap drama tersebut dan mengidentifikasi faktor-faktor yang berkontribusi terhadap popularitasnya melalui data cuitan di platform X. Metode yang digunakan dalam penelitian ini adalah analisis sentimen berbasis machine learning dengan algoritma Support Vector Machine (SVM). Data yang digunakan berupa cuitan berbahasa Indonesia yang dikumpulkan menggunakan kata kunci terkait drama Queen of Tears. Hasil klasifikasi sentimen menunjukkan bahwa model SVM mampu mengelompokkan cuitan ke dalam tiga kategori sentiment positif, netral, dan negatif dengan akurasi sebesar 89%. Model menunjukkan performa terbaik dalam mengklasifikasikan sentimen positif (precision 0.89, recall 0.99, dan f1-score 0.94), namun masih kurang optimal pada sentimen negatif (recall 0.39). Analisis distribusi sentimen menunjukkan bahwa mayoritas cuitan bersentimen positif, yang mencerminkan respons publik yang sangat baik terhadap drama ini. Lebih lanjut, melalui analisis frekuensi kata dan nilai TF-IDF dari cuitan positif, ditemukan bahwa faktor utama yang mendorong popularitas drama ini adalah alur cerita yang bagus, didukung oleh daya tarik pemeran serta tema yang menarik. Penelitian ini memberikan kontribusi dalam pemanfaatan analisis sentimen berbasis SVM untuk memahami persepsi publik terhadap produk hiburan, serta dapat dijadikan acuan bagi pelaku industri kreatif dalam merancang strategi pemasaran berbasis opini publik di media sosial.
/ The Korean drama Queen of Tears achieved high popularity and became a widely discussed topic on social media throughout 2024. This study aims to analyze public sentiment patterns toward the drama and identify the factors contributing to its popularity through tweet data on the X platform. The method used in this research is sentiment analysis based on machine learning using the Support Vector Machine (SVM) algorithm. The data consists of Indonesian-language tweets collected using keywords related to the drama Queen of Tears. The sentiment classification results show that the SVM model was able to categorize tweets into three sentiment classes—positive, neutral, and negative—with an accuracy of 89%. The model demonstrated its best performance in classifying positive sentiment (precision 0.89, recall 0.99, and f1-score 0.94), although its performance on negative sentiment was less optimal (recall 0.39). The sentiment distribution analysis revealed that the majority of tweets were positive, reflecting a strong public response to the drama. Furthermore, through word frequency and TF-IDF analysis of positive tweets, it was found that the main factors driving the drama’s popularity were its compelling storyline, supported by the appeal of the cast and the engaging theme. This study contributes to the application of SVM-based sentiment analysis to understand public perception of entertainment products and can serve as a reference for creative industry stakeholders in designing marketing strategies based on public opinion on social media.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Salim, Michael NIM03082210033 michaelsalim179@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Pangaribuan, Jefri Junifer NIDN0130108901 UNSPECIFIED |
Uncontrolled Keywords: | analisis sentimen; queen of tears; media sosial; support vector machine; popularitas drama |
Subjects: | Q Science > Q Science (General) Q Science > QA Mathematics Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Michael Salim |
Date Deposited: | 18 Jul 2025 07:34 |
Last Modified: | 18 Jul 2025 07:34 |
URI: | http://repository.uph.edu/id/eprint/69784 |