Hanitio, Edrick Hans (2025) Deteksi emosi wajah pelanggan setelah belanja melalui cctv toko dengan menggunakan haar cascade, kcf tracker, dan cnn. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
TITLE.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (196kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (455kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
TOC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (895kB)
![Chapter 1 [thumbnail of Chapter 1]](http://repository.uph.edu/style/images/fileicons/text.png)
CHAPTER 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (682kB)
![Chapter 2 [thumbnail of Chapter 2]](http://repository.uph.edu/style/images/fileicons/text.png)
CHAPTER 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter 3 [thumbnail of Chapter 3]](http://repository.uph.edu/style/images/fileicons/text.png)
CHAPTER 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (6MB)
![Chapter 4 [thumbnail of Chapter 4]](http://repository.uph.edu/style/images/fileicons/text.png)
CHAPTER 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 5 [thumbnail of Chapter 5]](http://repository.uph.edu/style/images/fileicons/text.png)
CHAPTER 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (497kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
BIBLIOGRAPHY.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (369kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
APPENDICES.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
Abstract
Penelitian ini bertujuan untuk mengembangkan sebuah sistem deteksi emosi
pelanggan secara real-time dengan memanfaatkan rekaman CCTV di lingkungan toko
ritel. Sistem yang dirancang mengintegrasikan tiga metode utama, yaitu Haar Cascade
untuk proses deteksi wajah, Kernelized Correlation Filters (KCF) Tracker untuk
pelacakan wajah yang telah terdeteksi, serta Convolutional Neural Network (CNN)
untuk klasifikasi ekspresi wajah ke dalam beberapa kategori emosi, meliputi senang,
marah, sedih, netral, takut, jijik, dan terkejut. Pendekatan terintegrasi ini diharapkan
dapat menghasilkan solusi yang efisien, praktis, serta mampu meningkatkan akurasi
dalam analisis perilaku pelanggan secara otomatis. Metodologi penelitian melibatkan
tahapan pengumpulan dataset ekspresi wajah, pelatihan model CNN dengan
menggunakan data gambar maupun file CSV, serta pengujian sistem dalam berbagai
kondisi nyata seperti variasi pencahayaan dan sudut pengambilan gambar. Hasil
eksperimen menunjukkan bahwa Haar Cascade mampu mencapai tingkat akurasi
hingga 99% dalam kondisi ideal, sementara KCF Tracker menunjukkan performa
pelacakan yang lebih stabil pada objek wajah dengan pergerakan lambat. Selain itu,
model CNN yang dilatih dengan data berformat CSV memperlihatkan peningkatan
akurasi dibandingkan model yang dilatih menggunakan data gambar. Secara
keseluruhan, hasil penelitian ini menunjukkan bahwa integrasi ketiga metode tersebut
menghasilkan sistem deteksi dan klasifikasi emosi yang cukup akurat, yang berpotensi
digunakan sebagai alat bantu dalam analisis perilaku pelanggan untuk mendukung
pengambilan keputusan strategis pemilik toko, khususnya dalam upaya meningkatkan
pengalaman berbelanja pelanggan melalui pemanfaatan teknologi berbasis kecerdasan
buatan.
/
This study aims to develop a real-time customer emotion detection system
utilizing CCTV footage in a retail store environment. The proposed system integrates
three main methods, namely Haar Cascade for facial detection, Kernelized Correlation
Filters (KCF) Tracker for tracking detected faces, and Convolutional Neural Network
(CNN) for classifying facial expressions into several emotion categories, including
happiness, anger, sadness, neutrality, fear, disgust, and surprise. This integrated
approach is expected to provide an efficient, practical solution capable of enhancing
the accuracy of automated customer behavior analysis. The research methodology
involves collecting a facial expression dataset, training the CNN model using both
image data and CSV files, and testing the system under various real-world scenarios,
such as different lighting conditions and camera angles. Experimental results show that
Haar Cascade achieves an accuracy rate of up to 99% under ideal conditions, while
the KCF Tracker demonstrates more stable performance when tracking faces with slow
movements. Moreover, the CNN model trained with CSV data exhibits improved
accuracy compared to training based on image data. Overall, the results indicate that
the integration of these three methods produces a sufficiently accurate system for
detecting and classifying customer emotions, which can be utilized as a decision
support tool for store owners, particularly in enhancing the shopping experience
through the adoption of artificial intelligence-based technology.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Hanitio, Edrick Hans NIM03082210038 edrickhans@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Robin, Robin NIDN0116128001 UNSPECIFIED |
Uncontrolled Keywords: | Haar Cascade; KCF Tracker; CNN; Deteksi Emosi; CCTV; Ekspresi Wajah |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Depositing User: | Edrick Hans Hanitio |
Date Deposited: | 21 Jul 2025 07:10 |
Last Modified: | 21 Jul 2025 07:10 |
URI: | http://repository.uph.edu/id/eprint/69809 |