Pengembangan chatbot analisis sentimen konten media sosial dengan algoritma K-Nearest Neighbor (KNN)

Kimberly, Kimberly (2025) Pengembangan chatbot analisis sentimen konten media sosial dengan algoritma K-Nearest Neighbor (KNN). Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (138kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (759kB)
[thumbnail of ToC] Text (ToC)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter1] Text (Chapter1)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (7MB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (6MB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (5MB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (603kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (702kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (9MB)

Abstract

Media sosial telah menjadi bagian penting dalam kehidupan sehari-hari, baik bagi individu maupun pelaku bisnis. Konten yang tersebar di media sosial tidak hanya bersifat informatif, tetapi juga mencerminkan opini dan sentimen publik. Bagi pelaku bisnis, memahami sentimen publik sangat penting untuk merumuskan strategi pemasaran dan mengenali peluang pasar. Untuk mengekstraksi insight secara efisien, penelitian ini mengembangkan chatbot yang mampu melakukan analisis sentimen secara interaktif. Analisis sentimen dilakukan dengan algoritma KNN, di mana pemilihan parameter terbaik dilakukan menggunakan teknik grid search. Sistem dirancang agar dapat menghasilkan beberapa model KNN dengan kombinasi parameter dan metrik evaluasi seperti akurasi, presisi, recall, dan f1-score. Model dengan performa terbaik kemudian dapat dipilih dan diintegrasikan ke dalam chatbot yang dikembangkan menggunakan framework Rasa. Antarmuka pengguna chatbot dikembangkan dengan Streamlit, API menggunakan Flask, dan basis data menggunakan MySQL. Hasil penelitian menunjukkan bahwa sistem mampu melakukan analisis sentimen secara otomatis, serta mendukung proses pengambilan keputusan berbasis opini publik. / Social media has become an essential part of daily life, both for individuals and businesses. The content circulating on social media is not only informative but also reflects public opinions and sentiments. For businesses, understanding public sentiment is crucial for formulating marketing strategies and identifying market opportunities. To extract insights efficiently, this study developed an interactive chatbot capable of performing sentiment analysis. The sentiment analysis is carried out using the K-Nearest Neighbors (KNN) algorithm, with optimal parameter selection performed through grid search. The system is designed to generate multiple KNN models with various parameter combinations and evaluation metrics such as accuracy, precision, recall, and F1-score. The best-performing model can then be selected and integrated into a chatbot developed using the Rasa framework. The chatbot’s user interface is built with Streamlit, the API is developed using Flask, and the database utilizes MySQL. The results of the study show that the system is capable of performing sentiment analysis automatically and supports decision-making processes based on public opinion.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Kimberly, Kimberly
NIM03081210024
kimberly08234@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Jusin, Jusin
NIDN0119056901
UNSPECIFIED
Uncontrolled Keywords: Media Sosial; Analisis Sentimen; KNN; Chatbot; Streamlit; Rasa; Flask; MySQL
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Depositing User: Kimberly Kimberly
Date Deposited: 22 Jul 2025 03:13
Last Modified: 22 Jul 2025 03:13
URI: http://repository.uph.edu/id/eprint/69913

Actions (login required)

View Item
View Item