Candra, Candra (2025) Analisis minat pelanggan terhadap spotify premium berbasis perilaku berlangganan menggunakan algoritme k-medoids dan regresi polinomial. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (131kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (190kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (520kB)
![Chapter 1 [thumbnail of Chapter 1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 1.pdf
Available under License Creative Commons Attribution Share Alike.
Download (650kB)
![Chapter 2 [thumbnail of Chapter 2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter 3 [thumbnail of Chapter 3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 4 [thumbnail of Chapter 4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter 5 [thumbnail of Chapter 5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (188kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (400kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (10MB)
Abstract
Perkembangan teknologi digital telah mengubah cara masyarakat dalam
mengakses musik, dengan Spotify menjadi salah satu platform streaming
terpopuler di dunia. Meskipun jumlah pelanggan Spotify Premium terus
meningkat secara global, masih terdapat berbagai permasalahan seperti tingkat
pembatalan langganan yang tinggi, kurangnya loyalitas terhadap fitur premium,
dan banyaknya pengguna yang kembali ke layanan gratis. Penelitian ini bertujuan
untuk memahami perilaku dan minat pelanggan terhadap Spotify Premium
melalui penerapan teknik data mining dan analisis regresi. Metode yang
digunakan meliputi algoritma clustering K-Medoids untuk mengelompokkan
pelanggan berdasarkan pola perilaku berlangganan, serta algoritma Regresi
Polinomial untuk menganalisis hubungan antara faktor-faktor perilaku dengan
minat berlangganan. Hasil penelitian menunjukkan bahwa algoritma K-Medoids
berhasil membentuk 9 cluster pelanggan dengan karakteristik yang berbeda, dan
faktor spotify_subscription_plan memiliki pengaruh paling signifikan terhadap
minat berlangganan dengan koefisien sebesar 324,506, diikuti oleh
preferred_listening_content sebesar 206,495 dan fav_music_genre sebesar
202,451. Temuan ini memberikan wawasan yang berguna bagi Spotify dalam
menyusun strategi pemasaran yang lebih tepat sasaran dan meningkatkan loyalitas
pelanggan.
/
The development of digital technology has transformed the way people
access music, with Spotify emerging as one of the most popular streaming
platforms in the world. Although the number of Spotify Premium subscribers
continues to grow globally, several issues persist, such as high subscription
cancellation rates, low loyalty to premium features, and many users reverting to
the free service. This study aims to understand customer behavior and interest in
Spotify Premium through the application of data mining techniques and
regression analysis. The methods used include the K-Medoids clustering
algorithm to group customers based on subscription behavior patterns, and
Polynomial Regression to analyze the relationship between behavioral factors
and subscription interest. The results show that the K-Medoids algorithm
successfully formed 9 customer clusters with distinct characteristics, and the
spotify_subscription_plan factor had the most significant influence on
subscription
interest
with
a
coefficient
of
324.506, followed by
preferred_listening_content at 206.495 and fav_music_genre at 202.451. These
findings provide valuable insights for Spotify in developing more targeted
marketing strategies and enhancing customer loyalty.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Candra, Candra NIM03082210036 Candra655@icloud.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Saragih, Jepronel NIDN0306019007 jepronel@lecturer.uph.edu |
Uncontrolled Keywords: | Spotify Premium; Data Mining; K-Medoids; Polynomial Regression; Customer Behavior, Subscription Interest, Customer Segmentation. |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Depositing User: | Candra Candra |
Date Deposited: | 24 Jul 2025 02:01 |
Last Modified: | 24 Jul 2025 02:01 |
URI: | http://repository.uph.edu/id/eprint/70088 |