Analisis minat pelanggan terhadap spotify premium berbasis perilaku berlangganan menggunakan algoritme k-medoids dan regresi polinomial

Candra, Candra (2025) Analisis minat pelanggan terhadap spotify premium berbasis perilaku berlangganan menggunakan algoritme k-medoids dan regresi polinomial. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (131kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (190kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Available under License Creative Commons Attribution Share Alike.

Download (650kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (188kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (400kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (10MB)

Abstract

Perkembangan teknologi digital telah mengubah cara masyarakat dalam mengakses musik, dengan Spotify menjadi salah satu platform streaming terpopuler di dunia. Meskipun jumlah pelanggan Spotify Premium terus meningkat secara global, masih terdapat berbagai permasalahan seperti tingkat pembatalan langganan yang tinggi, kurangnya loyalitas terhadap fitur premium, dan banyaknya pengguna yang kembali ke layanan gratis. Penelitian ini bertujuan untuk memahami perilaku dan minat pelanggan terhadap Spotify Premium melalui penerapan teknik data mining dan analisis regresi. Metode yang digunakan meliputi algoritma clustering K-Medoids untuk mengelompokkan pelanggan berdasarkan pola perilaku berlangganan, serta algoritma Regresi Polinomial untuk menganalisis hubungan antara faktor-faktor perilaku dengan minat berlangganan. Hasil penelitian menunjukkan bahwa algoritma K-Medoids berhasil membentuk 9 cluster pelanggan dengan karakteristik yang berbeda, dan faktor spotify_subscription_plan memiliki pengaruh paling signifikan terhadap minat berlangganan dengan koefisien sebesar 324,506, diikuti oleh preferred_listening_content sebesar 206,495 dan fav_music_genre sebesar 202,451. Temuan ini memberikan wawasan yang berguna bagi Spotify dalam menyusun strategi pemasaran yang lebih tepat sasaran dan meningkatkan loyalitas pelanggan. / The development of digital technology has transformed the way people access music, with Spotify emerging as one of the most popular streaming platforms in the world. Although the number of Spotify Premium subscribers continues to grow globally, several issues persist, such as high subscription cancellation rates, low loyalty to premium features, and many users reverting to the free service. This study aims to understand customer behavior and interest in Spotify Premium through the application of data mining techniques and regression analysis. The methods used include the K-Medoids clustering algorithm to group customers based on subscription behavior patterns, and Polynomial Regression to analyze the relationship between behavioral factors and subscription interest. The results show that the K-Medoids algorithm successfully formed 9 customer clusters with distinct characteristics, and the spotify_subscription_plan factor had the most significant influence on subscription interest with a coefficient of 324.506, followed by preferred_listening_content at 206.495 and fav_music_genre at 202.451. These findings provide valuable insights for Spotify in developing more targeted marketing strategies and enhancing customer loyalty.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Candra, Candra
NIM03082210036
Candra655@icloud.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Saragih, Jepronel
NIDN0306019007
jepronel@lecturer.uph.edu
Uncontrolled Keywords: Spotify Premium; Data Mining; K-Medoids; Polynomial Regression; Customer Behavior, Subscription Interest, Customer Segmentation.
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Depositing User: Candra Candra
Date Deposited: 24 Jul 2025 02:01
Last Modified: 24 Jul 2025 02:01
URI: http://repository.uph.edu/id/eprint/70088

Actions (login required)

View Item
View Item