Implementation of Gemini API in journaling applications to increase positive emotions of generation z = Implementasi API Gemini pada aplikasi pernjurnalan untuk meningkatkan emosi positif generasi z

Daruranto, Mario Imanuel (2024) Implementation of Gemini API in journaling applications to increase positive emotions of generation z = Implementasi API Gemini pada aplikasi pernjurnalan untuk meningkatkan emosi positif generasi z. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (71kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (165kB)
[thumbnail of TOC] Text (TOC)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (242kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (197kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (443kB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (899kB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (112kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (181kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (21MB)

Abstract

Mental health issues are increasingly prevalent among Generation Z, who often face challenges in managing their emotions effectively. Traditional psychological consultations, while beneficial, are not always accessible due to financial or logistical barriers. This study addresses the problem by exploring the potential of technology to provide an alternative solution for mood management and mental health improvement. The focus lies in leveraging the Gemini API to create a web-based application, Aetheria, which tracks users' emotions and offers personalized recommendations to improve their positive emotions. The proposed solution involves developing Aetheria, a mood tracker journaling application, which detects emotions from user-written journals. The application uses the Gemini API to process journal entries and return key insights, including emotional scores based on six basic emotions (happiness, sadness, disgust, fear, surprise, and anger), personalized recommendations, and a summary of user input. After the development of the application, a series of pre- and post-test questionnaires will be administered to assess its effectiveness in improving users' emotional well-being. The study aims to determine whether Aetheria can help users better manage their emotions, with the ultimate goal of enhancing their postive emotion. Pre-test and post-test questionnaires based on the PANAS model were employed to measure positive and negative emotions. The tests validated the questionnaire through Pearson Correlation and confirmed its reliability with a Cronbach's Alpha value of 0.87. The Shapiro-Wilk normality test revealed an abnormal distribution in the post-test for negative emotions (p = 0.031). Additionally, the Wilcoxon Signed-Rank Test found significant differences (p < 0.05) across all variables, demonstrating that Aetheria significantly improved users' positive emotions and reduced negative emotions. / Masalah kesehatan mental semakin banyak dihadapi oleh Generasi Z, yang sering mengalami kesulitan dalam mengelola emosi mereka dengan efektif. Konsultasi psikologis tradisional, meskipun bermanfaat, tidak selalu dapat diakses karena kendala finansial atau logistik. Penelitian ini bertujuan untuk mengatasi masalah ini dengan mengeksplorasi potensi teknologi dalam memberikan solusi alternatif untuk manajemen mood dan peningkatan kesehatan mental. Fokus penelitian ini adalah memanfaatkan API Gemini untuk membuat aplikasi berbasis web, Aetheria, yang dapat melacak emosi pengguna dan memberikan rekomendasi personal untuk meningkatkan emosi positif mereka. Solusi yang diusulkan melibatkan pengembangan Aetheria, sebuah aplikasi mood tracker journaling, yang dapat mendeteksi emosi dari jurnal yang ditulis oleh pengguna. Aplikasi ini menggunakan API Gemini untuk memproses entri jurnal dan menghasilkan wawasan utama, termasuk skor emosional berdasarkan enam emosi dasar (kebahagiaan, kesedihan, jijik, ketakutan, kejutan, dan kemarahan), rekomendasi personal, serta ringkasan input pengguna. Setelah pengembangan aplikasi, serangkaian kuesioner pre-test dan post test akan diberikan untuk menilai efektivitas aplikasi dalam meningkatkan kesejahteraan emosional pengguna. Penelitian ini bertujuan untuk mengetahui apakah Aetheria dapat membantu pengguna mengelola emosi mereka dengan lebih baik, dengan tujuan akhir untuk meningkatkan emosi positif mereka. Kuesioner pre-test dan post-test berdasarkan model PANAS digunakan untuk menilai emosi positif dan negatif. Pengujian menunjukkan validitas kuesioner melalui Pearson Correlation dan reliabilitasnya melalui Cronbach's Alpha (nilai 0,87). Uji normalitas Shapiro-Wilk mengidentifikasi distribusi data tidak normal pada post-test emosi negatif (p = 0,031). Selain itu, uji Wilcoxon Signed-Rank Test menemukan perbedaan signifikan (p < 0,05) pada semua variabel, membuktikan bahwa penggunaan Aetheria secara signifikan meningkatkan emosi positif pengguna dan mengurangi emosi negatif.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Daruranto, Mario Imanuel
NIM01082210021
mariodaruranto68@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Hudi, Robertus
NIDN0321029202
robertus.hudi@uph.edu
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Depositing User: Stefanus Tanjung
Date Deposited: 09 Aug 2025 05:26
Last Modified: 09 Aug 2025 05:26
URI: http://repository.uph.edu/id/eprint/70415

Actions (login required)

View Item
View Item