Multifaceted analysis of missile attacks in Ukraine with machine learning: trends, impacts and future risks = Analisis multifaset serangan rudal di Ukraina dengan machine learning: tren, dampak, dan risiko di masa depan

Polii, Sidney Cempaka (2024) Multifaceted analysis of missile attacks in Ukraine with machine learning: trends, impacts and future risks = Analisis multifaset serangan rudal di Ukraina dengan machine learning: tren, dampak, dan risiko di masa depan. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (28kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (192kB)
[thumbnail of TOC] Text (TOC)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (806kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (858kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (968kB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (370kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (436kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

In unfamiliar situations, a deep understanding is crucial for determining the appropriate response, including in the geopolitical conflict between Russia and Ukraine. This study aims to explore the conflict further and analyze attack patterns using machine learning. The dataset includes Russian attacks on Ukraine from October 2022 to July 2024. This research encompasses several types of analysis, including predictive impact analysis, geospatial analysis, and association analysis. The predictive impact analysis employs logistic regression and random forest models. The results indicate that random forest better captures complex data patterns, with an AUC of 0.56 compared to 0.5 for logistic regression. However, logistic regression has a higher recall of 1.0 compared to 0.98 for random forest. Feature importance analysis from the random forest model identifies three key factors influencing attacks: missile model category (Model Num), missile carrier category (Carrier Num), and the number of missiles launched (Launched). Geospatial analysis is used to map attack patterns through visualization with the Pydeck library. Data processing involves merging location datasets with latitude and longitude coordinates, requiring approximately three hours of processing time. The results reveal several locations that are more frequently targeted in attacks. Meanwhile, association analysis using the Apriori algorithm successfully identifies five strong condition pairs from 1,421 analyzed data rows. A lift value greater than one indicates a significant correlation between specific attack variables. The findings of this study are expected to contribute to the development of more effective defense strategies to minimize casualties and damage caused by attacks. / Dalam menghadapi situasi yang belum dikenal, pemahaman yang mendalam sangat penting untuk menentukan respons yang tepat, termasuk dalam konflik geopolitik antara Rusia dan Ukraina. Penelitian ini bertujuan untuk menggali lebih dalam peristiwa tersebut serta menganalisis pola serangan menggunakan machine learning. Data yang digunakan mencakup serangan Rusia terhadap Ukraina dari Oktober 2022 hingga Juli 2024. Penelitian ini mencakup beberapa analisis mulai dari analisis prediktif dan dampak, geospasial, dan asosiasi. Analisis prediktif dan dampak menggunakan model regresi logistik dan random forest. Hasilnya menunjukkan bahwa random forest lebih mampu menangkap pola data yang kompleks dengan nilai AUC 0.56 dibandingkan regresi logistik yang hanya mencapai 0.5. Namun, regresi logistik memiliki recall lebih tinggi sebesar 1.0 dibandingkan dengan 0.98 pada random forest. Analisis feature importance dari random forest mengidentifikasi tiga fitur utama yang paling berpengaruh dalam serangan, yaitu kategori model rudal (Model Num), kategori pembawa rudal (Carrier Num), dan jumlah rudal yang diluncurkan (Launched). Analisis geospasial digunakan untuk memetakan pola serangan dengan visualisasi menggunakan pustaka Pydeck. Pengolahan data melibatkan penggabungan dataset lokasi dengan koordinat garis lintang dan bujur, yang memerlukan waktu pemrosesan sekitar tiga jam. Hasil analisis menunjukkan beberapa lokasi yang lebih sering menjadi target serangan. Sementara itu, analisis asosiasi dengan algoritma apriori berhasil menemukan lima pasangan kondisi dengan hubungan yang kuat dari 1.421 baris data yang dianalisis. Nilai lift lebih dari satu menunjukkan bahwa pola serangan memiliki keterkaitan signifikan antara variabel tertentu. Diharapkan hasil penelitian ini dapat berkontribusi dalam pengembangan strategi pertahanan yang lebih efektif guna mengurangi korban jiwa dan kerusakan akibat serangan.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Polii, Sidney Cempaka
NIM0108221022
sdnycpolii@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Samosir, Feliks Victor Parningotan
NIDN1319049302
feliks.parningotan@uph.edu
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics
Depositing User: Stefanus Tanjung
Date Deposited: 09 Aug 2025 05:33
Last Modified: 09 Aug 2025 05:33
URI: http://repository.uph.edu/id/eprint/70417

Actions (login required)

View Item
View Item