Penerapan model support vector regression dan random forest dalam memprediksi indeks kualitas udara (aqi) di Jakarta = Application of support vector regression and random forest methods in predicting pm2.5 concentration in Jakarta

Riyadi, Karisma (2025) Penerapan model support vector regression dan random forest dalam memprediksi indeks kualitas udara (aqi) di Jakarta = Application of support vector regression and random forest methods in predicting pm2.5 concentration in Jakarta. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (202kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (602kB)
[thumbnail of TOC] Text (TOC)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (662kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (773kB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (810kB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (653kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (648kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)

Abstract

Polusi udara telah dianggap sebagai permasalahan lingkungan yang sangat mengkhawatirkan di seluruh dunia. Prediksi mengenai indeks kualitas udara memiliki peranan penting dalam memperingatkan manusia agar dapat meningkatkan kesadaran dan mengendalikan tingkat polusi udara. Penelitian ini bertujuan untuk melihat perbandingan kinerja model Support Vector Regression dan Random Forest dalam memprediksi indeks kualitas udara. Data yang digunakan merupakan data harian dengan rentang waktu yaitu 1 Januari 2018 hingga 31 Desember 2023. Data dibagi menjadi tiga periode yaitu periode 1 merupakan periode sebelum Pandemi COVID-19 (1 Januari 2018 - 31 Desember 2019), periode 2 merupakan periode sebelum Pandemi COVID-19 (1 Januari 2018 - 31 Desember 2019), dan periode 3 merupakan periode setelah Pandemi COVID-19 (1 Januari 2023 - 31 Desember 2023). Model SVR dan RF digunakan untuk memprediksi indeks kualitas udara di Jakarta. Kinerja model diukur menggunakan evaluasi metrik Adjusted R Squared, MAE, dan MAPE. Hasil dari pembentukkan model SVR dan RF menunjukkan bahwa kinerja dari kedua model paling baik ketika diterapkan pada dataset periode 1. Model SVR memperoleh nilai Adjusted R — — — Squared sebesar 96.638%, nilai MAE dan MAPE masing-masing sebesar 4.09109 atau sama dengan sebesar 5.62806% dengan menggunakan dua kombinasi variabel independen. Sedangkan, model RF memperoleh nilai R Squared sebesar 95.486%, nilai MAE dan MAPE masing-masing sebesar 4.47743 atau sama dengan 6.15757% dengan menggunakan tujuh kombinasi variabel independen dalam memprediksi indeks kualitas udara. Model Support Vector Regression memiliki kemampuan prediksi yang lebih baik dibandingkan model Random Forest. / Air pollution has been recognized as a critical environmental issue worldwide. Predicting the air quality index (AQI) plays a significant role in raising awareness and controlling the levels of air pollution. This study aims to compare the performance of the Support Vector Regression (SVR) and Random Forest (RF) models in predicting the AQI. The data used consists of daily records from January 1, 2018, to December 31, 2023. The data is divided into three periods: Period 1 represents the period before the COVID-19 pandemic (January 1, 2018 - December 31, 2019), Period 2 also represents the period before the COVID-19 pandemic (January 1, 2018 - December 31, 2019), and Period 3 represents the period after the COVID-19 pandemic (January 1, 2023 - December 31, 2023). The SVR and RF models were applied to predict the AQI in Jakarta. The model performance was assessed using evaluation metrics such as Adjusted R-Squared, MAE, and MAPE. The results of developing the SVR and RF models indicate that the performance of both models was optimal when applied to dataset period 1. The SVR model achieved an Adjusted R-Squared value of 96.368%, with MAE and MAPE values of 4.09109 and 5.62806%, respectively, using two independent variable combinations. In contrast, the RF model reached an R-Squared value of 95.486%, with MAE and MAPE values of 4.47743 and 6.15757%, respectively, using seven independent variable combinations to predict the AQI. Support Vector Regression (SVR) model demonstrates better predictive performance compared to the Random Forest (RF) model.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Riyadi, Karisma
NIM01112200017
karisma9b2016@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Ferdinand, Ferry Vincenttius
NIDN0323059001
ferry.vincenttius@uph.edu
Thesis advisor
Laurence, Laurence
NIDN0328077602
laurence.fti@uph.edu
Uncontrolled Keywords: polusi udara; support vector regression; random forest; indeks kualitas udara; kinerja model; air pollution; support vector regression; random forest; aqi; perfomance evaluation.
Subjects: Q Science > QA Mathematics
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Depositing User: Stefanus Tanjung
Date Deposited: 09 Aug 2025 06:18
Last Modified: 09 Aug 2025 06:18
URI: http://repository.uph.edu/id/eprint/70423

Actions (login required)

View Item
View Item