Analisis sentimen berbasis aspek dengan naïve bayes dan bert: study empiris umpan balik mahasiswa di universitas x = Aspect-based sentiment analysis using naive bayes and bert: an empirical study of student feedback at universityx.

David, Jonathan (2025) Analisis sentimen berbasis aspek dengan naïve bayes dan bert: study empiris umpan balik mahasiswa di universitas x = Aspect-based sentiment analysis using naive bayes and bert: an empirical study of student feedback at universityx. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (284kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (574kB)
[thumbnail of TOC] Text (TOC)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (579kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (567kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (838kB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (994kB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (600kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (569kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)

Abstract

Kepuasan mahasiswa/i terhadap fasilitas atau layanan universitas memerlukan analisis yang mendalam untuk memastikan peningkatan fasilitas atau layanan yang tidak memuaskan dan pertahankan fasilitas atau layanan yang memuaskan. Penelitian ini dilakukan dengan tujuan menganalisis sentimen survei kepuasan mahasiswa menggunakan metode Natural Language Processing (NLP). Data survei yang dikumpulkan tahun 2022 hingga 2024, dianalisis menggunakan dua pendekatan utama: Naive Bayes (NB) dengan n-gram (n = 1,2,3) menggunakan metode ekstraksi fitur Term Frequency-Inverse Document Frequency (TF-IDF) dan Bag of Words (BoW), dan Bidirectional Encoder Representations from Transformers (BERT). Hasil analisis menunjukkan bahwa performa BERT menunjukkan akurasi prediksi sentimen yang lebih tinggi dibandingkan NB, dengan nilai F1-score sebesar 0.776978. Penelitian ini juga mengidentifikasi kata kunci, baik sentimen positif, maupun negatif. Kata kunci tersebut kemudian akan dianalisis dalam 11 kategori fasilitas atau layanan untuk memberikan wawasan yang lebih terpusat mengenai aspek yang perlu dipertahankan dan ditingkatkan. Penelitian ini menyimpulkan bahwa analisis sentimen memberikan kontribusi yang penting bagi universitas dalam mengevaluasi dan meningkatkan kualitas fasilitas atau layanan sesuai preferensi mahasiswa/i secara keseluruhan. / Student satisfaction with university facilities and services requires in-depth analysis to ensure improvements in unsatisfactory facilities or services while maintaining those that meet expectations. This study aims to analyze sentiment in student satisfaction surveys using Natural Language Processing (NLP) methods. Survey data collected from 2022 to 2024 were analyzed using two main approaches: Naive Bayes (NB) with n-grams (n = 1,2,3) employing feature extraction methods such as Term Frequency-Inverse Document Frequency (TF-IDF) and Bag of Words (BoW), and Bidirectional Encoder Representations from Transformers (BERT). The analysis results indicate that BERT outperforms NBin terms of sentiment prediction accuracy, with an F1-score of 0.776978. This study also identified keywords for both positive and negative sentiments. These keywords were then analyzed across 11 categories of facilities and services to provide focused insights into aspects that need to be maintained or improved. This study concludes that sentiment analysis provides significant contributions to universities in evaluating and enhancing the quality of facilities and services according to student preferences.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
David, Jonathan
NIM01112210010
joda48614@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Saputra, Kie Van Ivanky
NIDN0401038203
kie.saputra@uph.edu
Thesis advisor
Panjaitan, Andry M.
NIDN0327127301
andry.panjaitan@uph.edu
Uncontrolled Keywords: kepuasan mahasiswa/i; analisis sentimen; nlp; nb; bert; n-gram; tf-idf; bow; fasilitas atau layanan universitas; student satisfaction; sentiment analysis; nlp; nb; bert; n-gram; tf-idf; bow; university facilities and services.
Subjects: Q Science > QA Mathematics
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Depositing User: Stefanus Tanjung
Date Deposited: 09 Aug 2025 15:44
Last Modified: 09 Aug 2025 15:44
URI: http://repository.uph.edu/id/eprint/70434

Actions (login required)

View Item
View Item