Perhitungan premi asuransi kendaraan bermotor menggunakan generalized linear model dengan distribusi tweedie dan gradient tree-boosted tweedie model = Modeling motor vehicle insurance premiums using generalized linear model with tweedie distribution and gradient tree-boosted tweedie model

Kosasih, Michelle (2025) Perhitungan premi asuransi kendaraan bermotor menggunakan generalized linear model dengan distribusi tweedie dan gradient tree-boosted tweedie model = Modeling motor vehicle insurance premiums using generalized linear model with tweedie distribution and gradient tree-boosted tweedie model. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (184kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (808kB)
[thumbnail of TOC] Text (TOC)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (708kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (703kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (983kB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (838kB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (688kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (688kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

Perusahaan asuransi harus menentukan harga premi yang sesuai untuk setiap profil risiko sehingga diperlukan model yang dapat memprediksi besar kerugian yang mungkin terjadi di masa depan. Penelitian ini bertujuan untuk memproyeksikan besar kerugian yang mungkin terjadi, membandingkan performa dari generalized linear models (GLM) dengan distribusi Tweedie dan gradient tree-boosted Tweedie model (TDboost), serta melakukan ratemaking dengan metode pure premium. Terdapat data tahun 2015, 2016, 2017, dan 2018 dari sebuah perusahaan asuransi kendaraan di Spanyol. Pada masing-masing tahun, akan dilakukan pemodelan kerugian dengan GLM dan TDboost. Melalui analisis RMSE diperoleh bahwa model TDboost memberikan hasil yang lebih baik dibandingkan GLM. Melalui analisis indeks gini dan kurva Lorentz juga diperoleh bahwa hasil premi murni dari model TDboost dapat menutupi ekspektasi kerugian dengan lebih baik. Selain itu, melalui analisis faktor risiko diperoleh bahwa polis asuransi dengan adanya pengendara kedua, kelompok pengendara berusia 18-29 tahun, dan kelompok pengendara dengan pengalaman mengemudi 0-7 tahun memberikan ekspektasi kerugian yang lebih besar daripada kategori yang lainnya. / Insurance companies must determine the appropriate premium price for each risk profile, so a model that can predict the amount of losses that may occur in the future is needed. This study aims to project the amount of losses that may occur, compare the performance of generalized linear models (GLM) with the Tweedie distribution and gradient tree-boosted Tweedie model (TDboost), and perform ratemaking with the pure premium method. Data from 2015, 2016, 2017, and 2018 from a vehicle insurance company in Spain is used. In each year, loss modeling will be carried out with GLM and TDboost. Through RMSE analysis, it is obtained that the TDboost model provides better results than GLM. Through analysis of the Gini index and Lorentz curve, it is also obtained that the pure premium results from the TDboost model can cover loss expectations better. In addition, through risk factor analysis, it was found that insurance policies with the presence of a second driver, the driver group aged 18-29, and the driver group with 0-7 years of driving experience provided greater loss expectations than the other categories.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Kosasih, Michelle
NIM01112210012
michellekosasih8@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Saputra, Kie Van Ivanky
NIDN0401038203
kie.saputra@uph.edu
Thesis advisor
Jobiliong, Eric
NIDN0323067204
eric.jobiliong@uph.edu
Uncontrolled Keywords: generalized linear model; distribusi Tweedie; multi-year analysis; loss model; gradient tree-boosted Tweedie model; ratemaking.
Subjects: Q Science > QA Mathematics
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Depositing User: Stefanus Tanjung
Date Deposited: 09 Aug 2025 15:53
Last Modified: 09 Aug 2025 15:53
URI: http://repository.uph.edu/id/eprint/70435

Actions (login required)

View Item
View Item