Wibisono, Shannen Surya (2025) Prediksi harga opsi jual dan beli pada aset bitcoin dan s&p 500 menggunakan machine learning dan simulasi monte carlo = Prediction of European call and put option prices on bitcoin and s&p 500 assets using machine learning and monte carlo simulation. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (334kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (740kB)
![TOC [thumbnail of TOC]](http://repository.uph.edu/style/images/fileicons/text.png)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (810kB)
![Chapter 1 [thumbnail of Chapter 1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (742kB)
![Chapter 2 [thumbnail of Chapter 2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 3 [thumbnail of Chapter 3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (945kB)
![Chapter 4 [thumbnail of Chapter 4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter 5 [thumbnail of Chapter 5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (735kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (743kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Opsi
merupakan instrumen keuangan yang digunakan sebagai lindung nilai
terhadap perubahan harga aset dasar, seperti saham, indeks saham, dan mata uang
kripto.
Penelitian ini membandingkan metode machine learning (XGBoost dan
LightGBM) dengan simulasi Monte Carlo dalam memprediksi harga opsi Eropa.
Perbedaan utama antara kedua pendekatan terletak pada pembagian data, di mana
metode machine learning menggunakan data acak, sementara simulasi Monte
Carlo memanfaatkan urutan data berdasarkan waktu. Selain itu, simulasi Monte
Carlo
menghasilkan rentang percentile 5% hingga 95%, sedangkan machine
learning memberikan satu nilai prediksi harga opsi. Hasil penelitian menunjukkan
bahwa pada metode machine learning, XGBoost memiliki nilai RMSE dan MAPE
yang lebih rendah dibandingkan LightGBM di sebagian besar datasetr. Pendekatan
dengan /ag jangka pendek lebih relevan untuk Bitcoin, sedangkan /ag jangka
panjang lebih sesuai untuk S&P 500. Hal ini dikarenakan volatilitas yang tinggi
waktu
yang
pada Bitcoin cenderung lebih sensitif terhadap penghitungan volatilitas dengan
interval
lebih
pendek.
=
Sementara
itu,
simulasi
Carlo
menghasilkan rentang percentile 5% hingga 95% sebagai acuan prediksi harga
opsi, dengan skema partisi data 60/40 terbukti lebih optimal dibandingkan skema 5
Monte
hari
sebelum jatuh tempo dan 80/20. Secara keseluruhan, baik metode machine
learning maupun simulasi Monte Carlo menunjukkan bahwa prediksi opsi untuk
aset Bitcoin lebih akurat dibandingkan S&P 500, dan prediksi opsi call lebih baik
dibandingkan opsi pus. Temuan ini memberikan panduan bagi penerbit opsi dan
investor dalam memilih metode prediksi yang tepat untuk berbagai jenis aset,
termasuk Bitcoin dan S&P 500, guna mendukung pengambilan keputusan
investasi yang lebih baik. / Options are financial instruments used to hedge against price fluctuations in
underlying assets such as stocks, stock indices, and cryptocurrencies. This study
compares the machine learning methods (XGBoost and LightGBM) with Monte
Carlo simulation in predicting European option prices. The key difference between
the
data,
two
approaches lies in data partitioning: machine learning utilizes random
while
Monte
Carlo
simulation
follows
a
time-ordered
sequence.
Additionally, Monte Carlo simulation produces a 5% to 95% percentile range,
whereas machine learning provides a single predicted price. The results indicate
that,
in
machine learning, XGBoost achieves lower RMSE and MAPE values
compared to LightGBM across most datasets. Short-term /ags are more relevant
for
Bitcoin, whereas long-term /ags are more suitable for the S&P 500 due to
Bitcoin’s high volatility, which is better captured by shorter time intervals.
Meanwhile, Monte Carlo simulation produces a 5% to 95% percentile range as a
reference for option prices, with a 60/40 data split proving to be the most optimal
compared to a 5-day pre-maturity split and an 80/20 split. Overall, both machine
learning and Monte Carlo simulation demonstrate that option predictions for
Bitcoin are more accurate than those for the S&P 500, and call options perform
better than put options. These findings provide valuable insights for option issuers
and
investors
in
selecting
appropriate prediction methods for various assets,
including Bitcoinand the S&P 500, to-support better investment decision-making.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Wibisono, Shannen Surya NIM01112210013 shannenswibisono@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Margaretha, Helena NIDN0312057504 helena.margaretha@uph.edu Thesis advisor Widjaja, Petrus NIDN0314095901 petrus.widjaja@lecturer.uph.edu |
Uncontrolled Keywords: | prediksi harga opsi Eropa; metode pembelajaran mesin; simulasi Monte Carlo; XGBoost; LightGBM; European option price prediction; machine learning methods; Monte Carlo simulation; XGBoost; LightGBM. |
Subjects: | Q Science > QA Mathematics |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics |
Depositing User: | Stefanus Tanjung |
Date Deposited: | 10 Aug 2025 02:15 |
Last Modified: | 10 Aug 2025 02:15 |
URI: | http://repository.uph.edu/id/eprint/70437 |