Perbandingan metode tradisional dengan metode clusteringdalammodel fama-frenchuntukanalisis return portofolio saham berdasarka nenvironmental, social, and governance (esg) = Comparisonoftraditionalmethodsandclusteringin fama-french model for analyzing stock portfolio returns based on environmental, social, and governance(esg)

Muliadiredja, Timothy Sean (2025) Perbandingan metode tradisional dengan metode clusteringdalammodel fama-frenchuntukanalisis return portofolio saham berdasarka nenvironmental, social, and governance (esg) = Comparisonoftraditionalmethodsandclusteringin fama-french model for analyzing stock portfolio returns based on environmental, social, and governance(esg). Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (313kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (718kB)
[thumbnail of TOC] Text (TOC)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (700kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (713kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (864kB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (941kB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (700kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (699kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

PenelitianinimengkajipengaruhEnvironmental,Social,andGovernance(ESG) terhadap return sahamdi Indonesia. DataESGtahun2023digunakanuntuk merepresentasikan kinerja jangka panjang perusahaan secara komprehensif. Analisis dilakukan menggunakan model Fama-French yang dikombinasikan denganmachinelearning(ClusteringdanGeneticAlgorithm).Metodeclustering danpendekatantradisionaldigunakanuntukklasifikasiukuran(kecil,sedang,dan besar) pada variabel independen model Fama-French, sedangkan Genetic Algorithm, equal-weighted, dan value-weighted digunakan untukmembentuk portofoliopadavariabel dependen. Penelitian ini tidakbertujuanmenyangkal teknik Fama-French tradisional, melainkanmemberikan perbandingan antara pendekatan tradisional dan penggunaanmachine learning. Hasil penelitian menunjukkanbahwaperusahaandengannilai ESGtinggi, sedang, dan rendah secarakonsistenmenghasilkanreturnlebihtinggidibandingkanperusahaantanpa nilaiESG.Pendekatantradisionaldanclusteringmenghasilkanhasilserupauntuk variabel seperti Intercept, MRP, danMOM, meskipun ditemukan perbedaan signifikanpadavariabelHML, yangmenunjukkanadanyaperbedaannilai yang dihasilkanantarakeduametode. Dari segi portofolio,metode equalweighted memberikan kestabilan terbaik bagi investor konservatif, sementara genetic algorithmmenawarkanalternatifyanglebihstabildibandingkanportofoliovalue weightedyanglebihfluktuatif. Tidakterdapatperbedaansignifikanantaramodel Fama-French 3, 5, dan 6 dalammengevaluasi dampak ESG. Penelitian ini berkontribusipadaliteraturESGdipasarberkembang,khususnyaIndonesia,serta memberikanwawasanbagi investordanpembuatkebijakan. Keterbatasanseperti kegagalanujiasumsiklasikperludievaluasidalampenelitianselanjutnya. / ThisstudyexaminestheimpactofEnvironmental,Social,andGovernance(ESG) onstock returns in Indonesia. ESGdata from2023wasused to represent the long-termperformance of companies more comprehensively. The analysis combinestheFama-Frenchmodelwithmachinelearningmethods(Clusteringand GeneticAlgorithm). Theclusteringmethodandtraditionalapproacheswereused toclassifysizes (small,medium, andlarge) for the independentvariables inthe Fama-French model, while the Genetic Algorithm, equal-weighted, and value-weightedmethodswereapplied toconstruct portfolios for thedependent variables.Thisstudydoesnotaimtoreject thetraditionalFama-Frenchtechnique but rather toprovideacomparisonbetween traditionalmethodsand theuseof machinelearning. Theresultsshowthatcompanieswithhigh,medium, andlow ESGscoresconsistentlydeliverhigherreturnscomparedtonon-ESGcompanies. Traditionalapproachesandclusteringproducedsimilar resultsforvariablessuch asIntercept,MRP,andMOM,butsignificantdifferenceswerefoundintheHML variable, showingdiscrepanciesbetween the twomethods. For portfolios, the equal-weightedmethod provided the best stability for conservative investors, while theGeneticAlgorithmofferedamore stablealternativecompared to the morevolatilevalue-weightedportfolios. Therewerenosignificant differences amongtheFama-French3,5,and6modelsinevaluatingESGimpacts.Thisstudy contributes toESGliterature inemergingmarkets, especially Indonesia, while providinginsightsforinvestorsandpolicymakers.Limitations,suchasthefailure ofclassicalassumptiontests,shouldbeevaluatedinfuturestudies.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Muliadiredja, Timothy Sean
NIM01112210018
timothysm88@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Ferdinand, Ferry Vincenttius
NIDN0323059001
ferry.vincenttius@uph.edu
Thesis advisor
Saputra, Kie Van Ivanky
NIDN0401038203
kie.saputra@uph.edu
Uncontrolled Keywords: ESG; return saham; investasi; Fama-French; genetic algorithm; ESG; stockreturns; investment; Fama-French; geneticalgorithm.
Subjects: Q Science > QA Mathematics
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics
Depositing User: Stefanus Tanjung
Date Deposited: 10 Aug 2025 02:40
Last Modified: 10 Aug 2025 02:40
URI: http://repository.uph.edu/id/eprint/70438

Actions (login required)

View Item
View Item