Wirjanto, Ferell Aaron (2025) Analisis alokasi kredit bank perkreditan rakyat di Indonesia menggunakan machine learning dan shapley additive explanations = Analysis of rural bank credit all ocation in Indonesia using machine learning and shapley additive explanations. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (267kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (702kB)
![TOC [thumbnail of TOC]](http://repository.uph.edu/style/images/fileicons/text.png)
TOC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (693kB)
![Chapter 1 [thumbnail of Chapter 1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (712kB)
![Chapter 2 [thumbnail of Chapter 2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (995kB)
![Chapter 3 [thumbnail of Chapter 3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (834kB)
![Chapter 4 [thumbnail of Chapter 4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter 5 [thumbnail of Chapter 5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (663kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (706kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Penelitianini akanfokuspadapemanfaatanberbagai teknikpembelajaranmesin
untukmemprediksi alokasi kredit di bank-bank pedesaan danmenggunakan
SHapley Additive exPlanations (SHAP) untuk menentukan signifikansi dari
berbagai fituryangdigunakandalammodelprediktif. Di Indonesia, kelangkaan
fasilitas perbankan tradisional di daerah pedesaan telah mengarah pada
pembentukanBankPerkreditanRakyat(BPR),yangbertujuanuntukmenyediakan
danmeningkatkan akses kredit bagi komunitas yang kurang terlayani serta
mendukungpengembanganekonomidaninklusikeuangan.Studiinimengevaluasi
beberapa model pembelajaran mesin, termasuk LightGBM, XGBoost, serta
mengeksplorasi efektivitas penggabungan model-model menggunakan regresi
lineardalamstackinguntukmengidentifikasipendekatanyangpalingcocokuntuk
memprediksi kredit BPRdi Indonesia. Sebelumpemodelan, teknik recursive
clusteringditerapkanuntukmemperhitungkankondisiekonomiyangberagamdi
seluruhnegeri. NilaiSHAPkemudiandigunakanuntukmenganalisispentingnya
fiturdalammodelyangberkinerja terbaikdi setiapklaster. Penemuanstudi ini
menunjukkan bahwa model gabungan yangmenggabungkan LightGBM dan
XGBoost, dengan Regresi Linear sebagai meta-learner, mencapai akurasi
keseluruhan tertinggi dengan hasil terbaiknya memiliki nilai RMSE sebesar
33.1078,MAEsebesar 25.2817danMAPEsebesar 0.9608%. Namun, dalam
beberapa kasus, model tunggal dapat melampaui performamodel gabungan.
Analisispentingnya fiturmenunjukkanbahwadanapihakketigadanasetBPR
adalahprediktoryangpalingberpengaruhkepadakinerjakreditBPR. / This researchfocusesonutilizingmachine learning techniques topredict credit
allocation in rural banks and uses SHapleyAdditive exPlanations (SHAP) to
determinethesignificanceofvariousmodelfeatures. InIndonesia, thescarcityof
traditional bankingfacilities inrural areashas led to theestablishment ofBank
Perkreditan Rakyat (BPR), or rural banks, which aim to provide credit to
underserved communities and foster economic development and financial
inclusion. This study evaluates several machine learningmodels, including
LightGBM,XGBoost, andexplores the effectiveness of stacking thesemodels
usinglinear regressiontoidentifythemost suitableapproachforpredictingrural
bankcredit inIndonesia. Prior tomodeling, clusteringtechniquesareappliedto
accountforthediverseeconomicconditionsacrossthecountry. SHAPvaluesare
thenusedtoanalyzefeatureimportancewithinthebest-performingmodelofeach
cluster. The findings indicate that a stackedmodel combiningLightGBMand
XGBoost,withLinearRegressionasthemeta-learner,achievesthehighestoverall
accuracywithitsbest resultshavingaRMSEof33.1078,MAEof25.2817and
MAPEof0.9608%. However, insomeinstances,standalonemodelsmaysurpass
it. Analysisoffeatureimportancerevealsthat third-partyfundsandtheassetsof
ruralbanksarecriticalpredictorsofruralbankcreditperformance.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Wirjanto, Ferell Aaron NIM01112210025 ferellaaron@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Ferdinand, Ferry Vincenttius NIDN0323059001 ferry.vincenttius@uph.edu Thesis advisor Haryani, Calandra Alencia NIDN0307079302 calandra.haryani@uph.edu |
Uncontrolled Keywords: | clustering;kredit BPR pembelajaran mesin;SHAP; clustering;machine learning;rural bank credit;SHAP. |
Subjects: | Q Science > QA Mathematics |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics |
Depositing User: | Stefanus Tanjung |
Date Deposited: | 10 Aug 2025 04:53 |
Last Modified: | 10 Aug 2025 04:53 |
URI: | http://repository.uph.edu/id/eprint/70442 |