Callysta, Alvin Christianto (2019) Penggunaan ecg module ad8232 untuk deteksi dan analisa sinyal eeg = Usage of ecg module ad8232 sensor for eeg detection and analysis. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (20MB)
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (172kB) | Preview
Preview
TOC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (243kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (148kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (987kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (130kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (113kB)
Preview
Bibliographies.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (114kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (263kB)
Abstract
Kantuk atau drowsiness dapat mengurangi penyerapan materi pelajaran siswa-siswi saat belajar di kelas. Ada beberapa penyebab drowsiness, diantaranya adalah pola tidur, kondisi ruangan, cara penyampaian materi, dan lain-lain. Fokus awal penelitian ini adalah bagaimana caranya mendeteksi drowsiness menggunakan sinyal EEG. Namun, dikarenakan modul sensor EEG masil relatif mahal, maka digunakanlah modul sensor ECG sebagai alat pengukuran alternatif. ECG module AD8232 mempunyai sensitivitas yang kurang memadai saat digunakan untuk mendapatkan sinyal EEG bertegangan kecil sekitar 1-200μV, sehingga dibutuhkan modul penguat sinyal atau amplifier module. Untuk memastikan modul penguat AD620, modul ECG AD8232, A/D ADS1115, dan seluruh rangkaian yang disebut sebagai alat akusisi sinyal EEG dapat bekerja dengan semestinya, diperlukan simulasi dengan menggunakan sumber dari Signal Generator yang menyerupai sinyal EEG sebagai input. Hasil simulasi menunjukkan bahwa alat akuisisi sinyal EEG dapat memperkuat sinyal input dengan tegangan 2mV sebesar 1000x. Walaupun pada simulasi ini tidak menggunakan sinyal dengan skala tegangan μV karena keterbatasan dari Signal Generator, alat akusisi ini memungkinkan untuk mengukur sinyal EEG. Untuk kasus pendeteksian drowsiness saat kelas berlangsung, dibutuhkan beberapa alat akusisi yang terhubung secara bersamaan menggunakan teknologi IoT (Internet of Things). Alat akusisi diterapkan terhadap delapan orang relawan yang sedang belajar di kelas. Tiga elektroda ditempatkan pada posisi Cz, P4, dan A2 (Mastoid), dengan proses penyimpanan data EEG menggunakan Blynk app. Data dianalisa menggunakan FFT untuk mengetahui frekuensi Theta yang menandakan saat seseorang mengantuk. / Drowsiness can affect the students’ ability to understand the subject when learning in a class. There are many causes of drowsiness, which are sleep pattern, room condition, the delivery of the subject, among others. The primary focus of this research is how to detect drowsiness using EEG signal. However, because the EEG sensor module still relatively costly, therefore ECG sensor module is used as an alternative measuring device. ECG module AD8232 doesn’t have enough sensitivity when it is used to get EEG signal with low voltage, around 1-200μV, so it is necessary to have amplifier module. To make sure that AD620 Instrumentation Amp Module, ECG module AD8232, A/D ADS1115, and the circuit which is called “alat akusisi sinyal EEG” (EEG signal acquisition device) can work properly, it is needed to simulate the circuit by using the signal from Signal Generator that resembles as EEG signal as an input. The result of the simulation shows that the EEG signal acquisition device can amplify the input signal with 2mV voltage by 1000x. Even though the signal input in this simulation’s voltage is not in μV because of the limitation from the Signal Generator, this acquisition device can make signal EEG measuring possible. For the case of drowsiness detection in a class, it needs a few of acquisition devices which connected together using IoT (Internet of Things) technology. The acquisition device is applied to eight participants that is studying in a class. Three electrodes is being placed at Cz, P4, dan A2 (Mastoid), with the Blynk app as data storage. The data is analyzed using FFT (Fast Fourier Transform) to know the Theta frequency that indicates when someone is drowsy.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Callysta, Alvin Christianto NIM00000012551 ALVIN_CALLYSTA@YAHOO.COM UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Hareva, David Habsara NIDN0316037206 UNSPECIFIED Thesis advisor Tjahyadi, Hendra NIDN0410076901 UNSPECIFIED |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | Mr Samuel Noya |
Date Deposited: | 09 Jun 2020 04:27 |
Last Modified: | 17 Jul 2020 07:54 |
URI: | http://repository.uph.edu/id/eprint/8756 |