Venessa Tanlim, Anastasia (2020) Penerapan data mining untuk prediksi pembelian barang pada distributor lampu menggunakan metode apriori (studi kasus : PT. Cahaya Prima Lestari Abadi). Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (448kB)
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (46kB) | Preview
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (471kB)
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (161kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (487kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (41kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (39kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Apriori merupakan algoritma yang banyak digunakan untuk menentukan pola hubungan antar produk yang sering dibeli bersamaan dalam suatu toko. Algoritma Apriori ini akan sesuai diterapkan dalam bidang penentuan strategi ataupun promosi. PT. Cahaya Prima Lestari Abadi adalah salah satu Perusahaan Distributor Lampu Philips di kota Medan. Salah satu masalah dari perusahaan adalah ketidakseimbangan stok di gudang. Sehingga tujuan dari penelitian ini adalah untuk mendapatkan prediksi pembelian produk dari supplier untuk menjaga keseimbangan stok dengan produk yang terjual ke konsumen. Objek dalam penelitian ini yaitu penerapan algoritma apriori. Data penelitian ini berupa data transaksi penjualan di PT. CPLA. Analisis data menggunakan Software RapidMiner dengan menentukan nilai support dan confidence. Hasil analisis menunjukkan terdapat 22 aturan asosiasi dengan minimum support 20% dan minimum confidence 50% dari informasi ini diharapkan dapat membantu pihak perusahaan dalam menyusun strategi pembelian produk dari supplier sesuai dengan itemset yang terbentuk./Apriori is an algorithm that is widely used to determine the pattern of relationships between products that are often bought together in a store. This Apriori algorithm will be suitable to be applied in the field of determining strategy or promotion. PT. Cahaya Prima Lestari Abadi is one of the Philips Lighting Distributor Companies in Medan. One of the problem of the company is the imbalance of stock in the warehouse. So the purpose of this research is to obtain product purchase predictions from suppliers to maintain stock balance with product solds to customers. The object of this research is the application of apriori algorithm. This research data is in the form of sales transaction data at PT. CPLA. Data analysis using RapidMiner Software by determining the valure of support and confidence. The analysis shows that there are 22 Association Rules with a minimum support 20% and a minimum confidence 50%. This information is excpected to help the company in developing a product purchasing strategy from the supplier.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Venessa Tanlim, Anastasia NIM00000022858 anaztanlimavt@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Ferawaty, Ferawaty NIDN0127047701 ferawaty.fik@uph.edu |
Uncontrolled Keywords: | data mining; association rules; algoritma apriori |
Subjects: | Q Science > Q Science (General) |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems |
Depositing User: | Users 9215 not found. |
Date Deposited: | 10 Aug 2020 11:11 |
Last Modified: | 14 Jan 2022 10:09 |
URI: | http://repository.uph.edu/id/eprint/9959 |