Erlina, Erlina (2022) Pengukuran akurasi image classification menggunakan metode convolutional neural network pada tulisan angka mandarin. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (234kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (291kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (645kB) | Preview
Preview
Chapter 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (689kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter 5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (272kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (366kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Share Alike.
Download (939kB)
Abstract
Thanks to China’s rapid economic growth, has an impact on the increasing interest and popularity of Mandarin in the world. This has caused Mandarin to succeed in winning the position of being one of the languages that have an important role after English. Each character in Chinese consists of strokes that have their own meaning so that if one stroke is missing, the meaning of the character will also change. The length of the strokes also has an important role in determining the meaning of the character. If one of the strokes has a longer stroke, then the meaning will also change. Therefore, categorizing Chinese characters is more difficult when compared to other languages that use Latin characters. In this case, AI can be applied to help categorize Chinese characters with a lower error rate than humans. In this research, a Machine Learning model will be built using the Convolutional Neural Network method to perform the Image Classification process. The results of using the Convolutional Neural Network algorithm on the model built to provide an accuracy rate of 99%. / Berkat melesatnya pertumbuhan ekonomi negara Tiongkok berdampak pada meningkatnya minat dan popularitas Bahasa Mandarin di dunia. Hal ini menyebabkan Bahasa Mandarin berhasil menyabet posisi menjadi salah satu bahasa yang memiliki peran penting setelah Bahasa Inggris. Tiap karakter pada Bahasa Mandarin terdiri atas goresan-goresan yang memiliki maknanya sendiri sehingga apabila ada 1 goresan yang kurang maka makna dari karakter tersebut pun juga akan berubah. Bukan hanya jumlah goresan yang memiliki peran penting dalam karakter Bahasa Mandarin tetapi juga panjang dari goresan tersebut oleh karena itu, mengkategorikan karakter Bahasa Mandarin cukup sulit jika dibandingkan dengan bahasa lainnya yang menggunakan huruf latin. Dalam permasalahan ini, AI dapat diaplikasikan untuk membantu mengkategorikan karakter Bahasa Mandarin dengan tingkat kesalahan yang lebih rendah dibandingkan dengan manusia. Dalam penelitian ini akan dibangun model Machine Learning menggunakan metode Convolutional Neural Network untuk melakukan proses Image Classification. Hasil dari aplikasi algoritma Convolutional Neural Network pada model yang dibangun memberikan tingkat akurasi sebesar 99%.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Erlina, Erlina NIM03082180040 erlina.ng@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Damanik, Rudolfo Rizki NIDN0125049001 rudolfo.damanik@uph.edu |
Uncontrolled Keywords: | machine learning; convolutional neural network; image classification |
Subjects: | Q Science > QA Mathematics > QA76.75-76.765 Computer software |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Users 24135 not found. |
Date Deposited: | 18 Aug 2022 06:47 |
Last Modified: | 18 Aug 2022 06:47 |
URI: | http://repository.uph.edu/id/eprint/49739 |