Bachtiar, Nadya Felim (2019) Optimisasi model K-nearest neighbors, Ssupport vector regression, decision tree & random forest: kasus pemilihan konsentrasi program studi = Model optimization of K-nearest neighbors, support vector regression, decision tree & random forest: case study of academic concentration selection. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB) | Request a copy
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (139kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (256kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (149kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (299kB) | Request a copy
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (106kB) | Request a copy
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (961kB) | Request a copy
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (163kB) | Request a copy
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (205kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (9MB) | Request a copy
Abstract
Choosing an academic concentration is not an easy task for students due to the lack of information. Therefore, research about predicting the success rate of a student in an academic concentration based on their grades is necessary.
This research uses the data of graduated Informatics students’ grades from the class of 2013-2015. With four different algorithms, K-Nearest Neighbors, Support Vector Regression, Decision Tree, and Random Forest, the data is processed to create several prediction models based on each algorithm. To overcome the limited amount of data, the research use hyperparameter tuning for all the algorithms.
This research shows that the prediction models of Support Vector Regression and Random Forest algorithms are proven to predict GPA for each academic concentration using student’s grades from the 1st until the 4th semester with a low RMSE score of 0.106 and 0.052 respectively.
= Pemilihan konsentrasi merupakan keputusan yang sulit bagi mahasiswa karena kurangnya informasi yang ada. Agar mahasiswa mengetahui kemungkinan keberhasilan mereka dalam suatu konsentrasi, maka diperlukan penelitian untuk membuat prediksi mengenai nilai mahasiswa dalam tiap konsentrasi.
Data yang dipakai berupa nilai akademik mahasiswa Universitas Pelita Harapan program studi Informatika angkatan 2013-2015 yang sudah lulus. Data ini kemudian diolah untuk membuat beberapa model prediksi berdasarkan empat algoritma yang berbeda, yaitu K-Nearest Neighbors, Support Vector Regression, Decision Tree dan Random Forest. Untuk mengatasi terbatasnya data, dilakukan hyperparameter tuning dari setiap algoritma yang digunakan.
Dari hasil penelitian, dapat dibuktikan bahwa algoritma Support Vector Regression dan Random Forest mampu menghasilkan prediksi nilai IPK mata kuliah konsentrasi berdasarkan nilai semester satu hingga semester empat dengan nilai RMSE yang rendah, yaitu 0.106 dan 0.052.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Bachtiar, Nadya Felim NIM00000019602 nadyaf.bachtiar@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Yugopuspito, Pujianto NIDN0324086701 UNSPECIFIED Thesis advisor Lukas, Samuel NIDN0331076001 UNSPECIFIED |
Additional Information: | SK 82-16 BAC o |
Uncontrolled Keywords: | academic concentration; Decision Tree; K-Nearest Neighbors; optimization; prediction model; Random Forest; regression; Support Vector Regression; |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | Users 2770 not found. |
Date Deposited: | 18 Nov 2019 03:10 |
Last Modified: | 16 Aug 2021 06:06 |
URI: | http://repository.uph.edu/id/eprint/5603 |