Irwansyah, Deananda (2019) Aplikasi prediksi lokasi ikan tuna dengan gaussian process menggunakan metode SVM. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (7MB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (140kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (167kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (162kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (323kB) | Request a copy
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (237kB) | Request a copy
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (766kB) | Request a copy
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (136kB) | Request a copy
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (204kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (543kB) | Request a copy
Abstract
The condition of fisheries in Indonesia is still not optimal because fishing
by fishermen is still done manually. To optimize fishing in Indonesia, the SVM
method can be used to determine the prediction of tuna location using chlorophyll
concentration and sea surface temperature as the predictor and Gaussian Process to
see the relation between fishing vessel location data and prediction factor data.
The first step is the acquisition of fishing vessel location data, chlorophyll
concentration, and sea surface temperature. Then we cleanse the data which means
if there is empty data, it will be filled with data from the previous day. Then all
chlorophyll concentration data and sea surface temperature data are combined to
one collection of data. After that, SVM prediction model was made using combined
data between chlorophyll concentration and sea surface temperature as a basis for
making prediction of tuna’s location. After the prediction for tuna’s location is
obtained, we will map the tuna’s location in the application.
The results of this study are a comparison of the performance of prediction
models with 60% sampling, 70% sampling, and 80% sampling, Gaussian Process
visualization, performance evaluation of prediction models with RMSE, MSE, and
MAE for each model. The best model performance is achieved by 70% sampling
with value 74.5% and the best evaluation of prediction model is achieved by 60%
sampling with latitude and longitude RMSE values of 9.224925 and 25.198761,
MAE latitude and longitude data of 7.309412 and 19.80816, and MSE latitude and
longitude data of 85.09924 and 634.9775.
Kondisi perikanan di Indonesia saat ini masih belum optimal karena
penangkapan ikan oleh nelayan masih dilakukan secara manual. Untuk
mengoptimalkan penangkapan ikan di Indonesia dapat menggunakan metode SVM
untuk menentukan prediksi lokasi ikan dengan menggunakan konsentrasi klorofil
dan suhu pada permukaan laut sebagai faktor prediksinya dan Gaussian Process
untuk melihat relasi antara data kapal penangkap lokasi ikan dan data faktor
prediksinya.
Langkah pertama adalah akuisisi data lokasi kapal penangkap ikan,
konsentrasi klorofil, dan suhu pada permukaan laut. Data kemudian dibersihkan,
yakni jika ada data yang kosong maka akan diisi dengan data yang lain. Kemudian
semua data konsentrasi klorofil dan suhu pada permukaan laut digabungkan
menjadi satu. Lalu dibuat model prediksi SVM dengan menggunakan data
gabungan konsentrasi klorofil dan suhu pada permukaan laut sebagai dasar untuk
mencari prediksi lokasi keberadaan ikan tuna. Setelah prediksi lokasi ikan tuna
didapatkan, maka akan divisualisasikan hasil prediksi lokasi ikan tuna pada aplikasi.
Hasil penelitian yang didapat adalah perbandingan performa model prediksi
dengan 60% sampling, 70% sampling, dan 80% sampling, visualisasi Gaussian
Process, evaluasi performa model prediksi dengan RMSE, MSE, dan MAE setiap
model. Performa model terbaik dicapai oleh 70% sampling dengan nilai 74.5% dan
evaluasi performa model prediksi terbaik dicapai oleh 60% sampling dengan nilai
RMSE data latitude dan longitude sebesar 9.224925 dan 25.198761, MAE data
latitude dan longitude sebesar 7.309412 dan 19.80816, dan MSE data latitude dan
longitude sebesar 85.09924 dan 634.9775.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Irwansyah, Deananda NIM00000025513 deanirwan11@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Murwantara, I Made NIDN0302057304 UNSPECIFIED Thesis advisor Lukas, Samuel NIDN0331076001 UNSPECIFIED |
Additional Information: | SK 82-16 IRW a |
Uncontrolled Keywords: | SVM, Gaussian Process, tuna, prediksi, rmse, mse, mae, confusion matrix |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | Users 2762 not found. |
Date Deposited: | 18 Nov 2019 04:01 |
Last Modified: | 13 Sep 2021 08:53 |
URI: | http://repository.uph.edu/id/eprint/5615 |