Andriano, Jarvis (2023) perbandingan tingkat akurasi K-Nearest Neighbor dan Extreme Learning Machine dalam diagnosis penyakit tumor otak. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (25kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (186kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (554kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (547kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (185kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (187kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (16MB)
Abstract
Brain tumor is a disease that emerge due to the growth of abnormal cells in the
brain, which can interfere with the brain function. There are two types of brain
tumors, first, primary brain tumors, where the abnormal cells grow in the brain,
second, secondary brain tumors, where the abnormal cells growth originates from
other organs that spread to the brain. Early-stage brain tumors are often not
detected, so when they are known to exist, they have entered a high stage. Therefore,
the importance of prevention or early detection of brain tumors is crucial. One way
of prevention is the implementation of machine learning. This study presents a
comparison of the accuracy of K-Nearest Neighbor (KNN) and Extreme Learning
Machine (ELM) in the diagnosis of brain tumors. K-Nearest Neigboris a supervised
learning algorithm that classifies new instances based on the majority of k-neighbors. Extreme Learning Machine is a feedforward neural network algorithm
that has one hidden layer to determine the input and output load values. The results
showed that the extreme learning machine was superior in diagnosing brain tumors
with an accuracy rate of 97.3% compared to k-nearest neighbor with an accuracy
rate of 81.5%./Tumor otak merupakan penyakit yang timbul akibat tumbuhnya sel-sel abnormal
pada otak, yang dapat menggangu fungsi kerja otak. Tumor otak memiliki dua jenis,
yaitu tumor otak primer, dimana pertumbuhan sel abnormal di otak dan tumor otak
sekunder, dimana pertumbuhan sel abnormal berasal dari organ lain yang menyebar
ke otak. Tumor otak stadium awal, seringkali tidak terdeteksi keberadaan, sehingga
ketika sudah diketahui keberadaannya, sudah memasuki stadium tinggi. Oleh
karena itu, pentingnya pencegahan atau deteksi awal terhadap tumor otak. Salah
satu cara pencegahan adalah implementasi machine learning. Penelitian ini
menyajikan perbandingan tingkat akurasi K-Nearest Neighbor (KNN) dan Extreme
Learning Machine (ELM) dalam diagnosis penyakit tumor otak. K-Nearest
Neighbor merupakan algoritma supervised learning yang mengklasifikasikan
instance baru berdasarkan mayoritas dari k-tetangga. Extreme Learning Machine
adalah algoritma feedforward neural network yang memiliki 1 lapisan tersembunyi
untuk menentukan nilai beban input dan output. Hasil penelitian menunjukkan
bahwa Extreme Learning Machine lebih unggul dalam diagnosis penyakit tumor
otak dengan tingkat akurasi 97.3% dibandingkan K-Nearest Neighbor dengan
tingkat akurasi 81.5%.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Andriano, Jarvis NIM03082190017 jarvissandriano@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Barus, Okky Putra NIDN0127068803 okky.barus@uph.edu |
Uncontrolled Keywords: | brain tumor, machine learning, K-Nearest Neighbor, Extreme Learning Machine |
Subjects: | Q Science > QA Mathematics Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Medan > School of Information Science and Technology > Informatics |
Depositing User: | Users 29629 not found. |
Date Deposited: | 17 Aug 2023 12:41 |
Last Modified: | 17 Aug 2023 12:41 |
URI: | http://repository.uph.edu/id/eprint/57752 |