Lyasa, Gusti Mirah Vaniaveda (2023) Model nomogram untuk identifikasi atrisi karyawan menggunakan Regresi Logistik dan Naïve Bayes. Masters thesis, Universitas Pelita Harapan.
Preview
Title.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (67kB) | Preview
Preview
Abstract.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (306kB) | Preview
Preview
ToC.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (688kB) | Preview
Preview
Chapter1.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (780kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (834kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (345kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (464kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
Abstract
Penelitian ini bertujuan untuk mengembangkan model nomogram yang
efektif untuk mengidentifikasi tingkat atrisi karyawan dalam organisasi. Atrisi
karyawan merupakan masalah penting dalam manajemen sumber daya manusia
yang dapat berdampak negatif pada produktivitas dan stabilitas organisasi. Untuk
mencapai tujuan ini, penelitian ini menggunakan metode analisis data, termasuk
Logistic Regression dan Naive Bayes, untuk menganalisis faktor-faktor yang
berkontribusi terhadap atrisi karyawan.
Tahap awal dari penelitian ini adalah mengumpulkan dataset yang
mencakup informasi mengenai performa karyawan. Setelah itu, dilakukan
pemeriksaan data dan dilakukan evaluasi untuk melihat performa machine
learning. Performa machine learning di evaluasi menggunakan ROC analysis dan
performance curve. Tahap terakhir adalah membuat model nomogram untuk dapat
memvisualisasikan hubungan antara variable predictor dengan probabilitas atrisi
karyawan.
Penelitian ini bertujuan untuk membandingkan kinerja model regresi
logistik dan Naïve Bayes dalam memberikan informasi seputar hal-hal apa saja
yang mempengaruhi atrisi karyawan. Hal tersebut dapat dilihat dari tabel test and
score yang menunjukkan ,bahwa performa regresi logistik memiliki nilai yang
lebih tinggi dibandingkan Naïve Bayes. Tahap berikutnya adalah melakukan
evaluasi dengan membuat ROC analysis dan Performance Curve. Setelah di
evaluasi kita melakukan tahap berikutnya ,yaitu membuat visualisasi hasil
rekomendasi dengan nomogram. Di mana nomogram ini berfungsi untuk
menunjukkan parameter-parameter apa saja yang mempengaruhi atrisi karyawan.
Setelah melalui beberapa tahapan ,maka dapat disimpulkan bahwa regresi logistik
teridentifikasi dengan baik di bandingkan dengan Naïve Bayes. / This research aims to develop an effective nomogram model to identify the
level of employee attrition in organisations. Employee attrition is an important issue
in human resource management that can negatively impact organisational
productivity and stability. To achieve this goal, this research uses data analysis
methods, including Logistic Regression and Naive Bayes, to analyse the factors that
contribute to employee attrition.
The initial stage of this research is collecting a dataset that includes
information about employee performance. After that, the data is checked and an
evaluation is carried out to see the machine learning performance. Machine learning
performance is evaluated using ROC analysis and performance curve. The final
stage is to create a nomogram model to be able to visualize the relationship between
predictor variables and the probability of employee attrition.
This research aims to compare the performance of logistic regression and
Naïve Bayes models in providing information about what things influence
employee attrition. This can be seen from the test and score table which shows
that the performance of logistic regression has a higher value than Naïve Bayes.
The next stage is to evaluate by making a ROC analysis and Performance Curve.
After evaluation, we carry out the next stage, namely creating a visualization of
the recommendation results with a nomogram. Where this nomogram functions to
show what parameters influence employee attrition. After going through several
stages, it can be concluded that logistic regression is well-identified compared to
Naïve Bayes.
Item Type: | Thesis (Masters) |
---|---|
Creators: | Creators NIM Email ORCID Lyasa, Gusti Mirah Vaniaveda NIM01679220005 vaniavedavl@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Murwantara, I Made NIDN0302057304 made.murwantara@uph.edu |
Uncontrolled Keywords: | Nomogram ; Atrisi Karyawan ; Logistic Regression ; Naive Bayes ; Manajemen Sumber Daya Manusia |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics |
Depositing User: | Users 27794 not found. |
Date Deposited: | 20 Feb 2024 01:33 |
Last Modified: | 20 Feb 2024 01:33 |
URI: | http://repository.uph.edu/id/eprint/62357 |