The implementation of educational data mining in predicting students' academic achievement in mathematics at a private elementary school in Tangerang = Penerapan educational data mining dalam memprediksi capaian akademik siswa pada pelajaran matematika di sebuah sekolah dasar swasta di Tangerang

Tude, Krismon N.L. (2023) The implementation of educational data mining in predicting students' academic achievement in mathematics at a private elementary school in Tangerang = Penerapan educational data mining dalam memprediksi capaian akademik siswa pada pelajaran matematika di sebuah sekolah dasar swasta di Tangerang. Masters thesis, Universitas Pelita Harapan.

[thumbnail of Title]
Preview
Text (Title)
Title.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (112kB) | Preview
[thumbnail of Abstract]
Preview
Text (Abstract)
Abstract.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (254kB) | Preview
[thumbnail of ToC]
Preview
Text (ToC)
ToC.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (425kB) | Preview
[thumbnail of Chapter1]
Preview
Text (Chapter1)
Chapter1.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (343kB)
[thumbnail of Bibliography]
Preview
Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (922kB) | Preview
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

The application of Educational Data Mining (EDM) to predict academic achievement of elementary students in Mathematics is discussed in this thesis. Ten Machine Learning classifiers including eight base learners (Linear SVM, Logistic Regression, Medium KNN, Wide NN, Fine Decision Tree, Bilayered NN, Fine KNN, and Medium NN) along with two ensemble learners (Ensemble Subspace Discriminant and Ensemble Boosted Trees) are explored within the MATLAB environment utilizing a dataset consisting of various 33 academic and demographic features of 280 students. To address the imbalanced distribution in the classes, resampling methods such as Random Under-Sampling Boost (RUSBoost) and Synthetic Minority Oversampling Technique (SMOTE), and both combination as hybrid-resampling techniques are utilized. The experiment results show that the hybrid-sampling SMOTE-RUSBoosted Tree algorithm performs the best accuracy of 75% on testing data, suggesting that a combination of oversampling and undersampling techniques effectively models imbalanced datasets. The finding underscores the potential of EDM in elementary education setting to support data-driven interventions and to improve students’ achievement in Mathematics. / Tesis ini membahas tentang penerapan Educational Data Mining (EDM) untuk memprediksi capaiaan akademik dari siswa sekolah dasar pada pelajaran Matematika. Sepuluh model Machine Learning termasuk delapan base learner (Linear SVM, Logistic Regression, Medium KNN, Wide NN, Fine Decision Tree, Bilayered NN, Fine KNN, dan Medium NN) beserta dua model Ensemble (Ensemble Subspace Discriminant and Ensemble Boosted Trees) diterapkan pada platform MATLAB menggunakan dataset yang terdiri dari 33 fitur akademik dan demografis dari 280 siswa. Untuk mengatasi distribusi kelas yang tidak seimbang, metode resampling seperti Random Under-Sampling Boost (RUSBoost) dan Synthetic Minority Oversampling Technique (SMOTE), dan gabungan keduanya (hybrid sampling) juga digunakan pada tesis ini. Hasil eksperimen menunjukkan bahwa algoritma hybrid-sampling, SMOTE-RUSBoosted Tree, mencapai akurasi terbaik sebesar 75% pada data uji. Penelitian ini menunjukkan bahwa kombinasi teknik oversampling dan undersampling secara efektif dapat memodelkan data yang tidak seimbang. Hasil temuan ini juga menggarisbawahi potensi EDM pada lingkungan pendidikan dasar untuk mendukung intervensi berbasis data dalam meningkatkan capaian akademik pada pelajaran Matematika.
Item Type: Thesis (Masters)
Creators:
Creators
NIM
Email
ORCID
Tude, Krismon N.L.
NIM01679220008
rellytude2@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Tjahyadi, Hendra
NIDN0410076901
hendra.tjahyadi@uph.edu
Uncontrolled Keywords: educational data mining ; mathematics achievement : classification algorithms ; ensemble learning ; imbalanced class ; resampling methods
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Depositing User: Users 27795 not found.
Date Deposited: 20 Feb 2024 02:47
Last Modified: 20 Feb 2024 02:47
URI: http://repository.uph.edu/id/eprint/62366

Actions (login required)

View Item
View Item