Limando, Rovario Khogus (2023) Aplikasi mendeteksi gol dengan metode Convolutional Neural Network dan Transfer Learning = Application for goal detection with Convolutional Neural Network and Transfer Learning methods. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (25kB) | Preview
Preview
Abstract.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (226kB) | Preview
Preview
ToC.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (490kB) | Preview
Preview
Chapter1.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (655kB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (311kB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (138kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (443kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (899kB)
Abstract
Dalam ranah sepak bola, sebuah gol dipandang terjadi ketika bola telah
sepenuhnya melewati garis gawang. Namun, terdapat insiden-insiden di mana gol
yang seharusnya diakui sah malah dinyatakan tidak valid, dan sebaliknya. Dalam
lingkungan sepak bola amatir, sering kali terjadi ketidakjelasan mengenai garis
gawang. Garis gawang yang jelas masih memunculkan keraguan apakah gol yang
dinyatakan valid atau tidak, keraguan semakin besar ketika garis gawang tidak
terlihat sama sekali. Dengan menghadapi dilema ini, telah diperkenalkan sebuah
inovasi teknologi yang dikenal sebagai goal line technology (GLT), yang bertujuan
untuk membantu wasit dalam menetapkan keabsahan suatu gol. Namun, kendati
manfaatnya yang nyata, implementasi teknologi GLT terhambat oleh biaya yang
signifikan dalam pemasangannya dan juga biaya operasionalnya, menyebabkan
sebagian operator liga cenderung enggan untuk mengadopsinya.
Dalam tugas akhir ini dikembangkan sebuah aplikasi bergerak berbasis
Android untuk mendeteksi kejadian gol sebagai alternatif dari GLT. Metode yang
digunakan dalam pendeteksian kejadian gol adalah Machine Learning, dengan
menerapkan algoritma Convolutional Neural Network, dan teknik Transfer
Learning. Bersama dengan model pralatih (pretrained model) InceptionV3 data
citra gawang dengan variasi posisi bola disekitar garis gawang dilatih menggunakan
Transfer Learning untuk menghasilkan model baru. Model yang disimpan dalam
format .tflite digunakan didalam prediksi keabsahan suatu gol berdasarkan citra dari
tangkapan kamera smartphone. Pengujian model menggunakan data latihan dan
data baru. Berdasarkan hasil prediksi aplikasi akan memberi notifikasi kepada
pengguna saat terjadi gol.
Akurasi dari pengujian model yang ada adalah sebesar 89%. Secara umum
dapat disimpulkan bahwa model dapat digunakan oleh aplikasi untuk
mengklasifikasi gol. Sekalipun demikian kehadiran wasit masih dibutuhkan untuk
memverifikasi hasil prediksi dari aplikasi. / In the realm of football, a goal is seen as occurring when the ball has
completely crossed the goal line. However, there have been incidents where goals
that should have been recognized as valid were instead declared invalid, and vice
versa. In the amateur football environment, there is often a lack of clarity regarding
goal lines. If the visible goal line still raises doubts about whether the goal declared
is valid or not, doubts are even greater when the goal line is not visible at all. By
facing this dilemma, a technological innovation known as goal line technology
(GLT) has been introduced, which aims to assist referees in determining the validity
of a goal. However, despite its obvious benefits, the implementation of GLT
technology is hampered by the significant costs of installation and operational costs,
causing reluctance among some league operators to adopt it.
In this final project, an Android-based mobile application was developed to
detect goal events as an alternative to GLT. The method used in detecting goal
events is Machine Learning, by applying the Convolutional Neural Network
algorithm and Transfer Learning techniques. Together with the InceptionV3 pretrained model, the goal image data with variations in the position of the ball around
the goal line was trained using Transfer Learning to produce a new model. The
model saved in .tflite format is used to predict the validity of a goal based on images
captured by a smartphone camera. Model testing using training data and new data.
Based on the prediction results, the application will notify the user when a goal
occurs.
The accuracy of the existing model testing is 89%. In general, it can be
concluded that the model can be used by applications to classify goals. However,
in some case the presence of a referee is still needed to verify the prediction results
from the application.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Limando, Rovario Khogus NIM01082200001 rovariokl@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Lukas, Samuel NIDN0331076001 samuel.lukas@uph.edu |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | ROVARIO KHOGUS LIMANDO |
Date Deposited: | 26 Feb 2024 03:40 |
Last Modified: | 26 Feb 2024 03:42 |
URI: | http://repository.uph.edu/id/eprint/62525 |