Kristanto, Jason (2025) Prediction of Ultimate Fighting Championship year [1994-2022] using xgboost and random forest algorithms = Prediksi hasil pertandingan Ultimate Fighting Championship tahun [1994-2022] menggunakan algoritma xgboost dan random forest. Bachelor thesis, Universitas Pelita Harapan.
Preview
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (146kB) | Preview
Preview
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (348kB) | Preview
Preview
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (599kB) | Preview
Preview
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB) | Preview
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (3MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (278kB)
Preview
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (429kB) | Preview
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
The Ultimate Fighting Championship (UFC) is the world’s largest mixed martial arts (MMA) organization, featuring fighters from diverse martial arts disciplines. In today’s data-driven landscape, predicting UFC match outcomes has become increasingly important—not only for coaches and analysts but also for the sports betting industry and fans. The main challenge in making such predictions lies in the numerous statistical variables that influence fight outcomes and the complexity of evolving fight data. With the growing availability of historical fight data, machine learning (ML)-based predictive methods offer a promising solution that can provide higher accuracy than traditional statistical or intuition-based approaches.
This study aims to develop a predictive model for UFC fight outcomes by comparing the performance of two popular ML algorithms: Random Forest and Extreme Gradient Boosting (XGBoost). The research methodology consists of data preprocessing, feature engineering, skill and form score calculation, model training, hyperparameter tuning, and
evaluation using metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Experimental results show that the XGBoost model achieved a prediction accuracy of
69.1%, slightly outperforming the Random Forest model, which reached 68.64%. The XGBoost model also attained an F1-score of 0.68 and a recall of 0.69, indicating balanced
performance. In contrast, Random Forest obtained an F1-score of 0.67. These findings suggest that XGBoost is more effective at handling the complexity of UFC fight data and
provides more stable predictions. Therefore, XGBoost is recommended for developing data-driven UFC fight outcome prediction systems. / Ultimate Fighting Championship (UFC) merupakan organisasi olahraga bela diri campuran (Mixed Martial Arts/MMA) terbesar di dunia, yang menyajikan pertarungan antara petarung dari berbagai disiplin seni bela diri. Dalam dunia yang semakin data-driven, prediksi hasil pertandingan UFC menjadi penting tidak hanya bagi pelatih dan analis olahraga, tetapi juga bagi industri taruhan olahraga dan penggemar. Permasalahan utama dalam prediksi ini adalah banyaknya variabel statistik yang saling mempengaruhi dan kompleksitas data pertarungan yang terus berkembang. Dengan meningkatnya volume data historis dan statistik pertandingan, metode prediktif berbasis pembelajaran mesin (machine learning) menjadi solusi yang potensial untuk menghasilkan prediksi yang lebih akurat dibandingkan metode konvensional.
Penelitian ini bertujuan untuk membangun model prediksi hasil pertandingan UFC dengan membandingkan performa dua algoritma machine learning populer, yaitu Random Forest dan Extreme Gradient Boosting (XGBoost). Tahapan penelitian meliputi preprocessing data, feature engineering, pembuatan fitur skor keterampilan dan performa, pelatihan
model, tuning hyperparameter, serta evaluasi menggunakan metrik seperti akurasi, precision, recall, F1-score, dan ROC-AUC. Penelitian ini juga melakukan analisis fitur penting yang berkontribusi terhadap prediksi hasil pertandingan. Hasil eksperimen menunjukkan bahwa model XGBoost mampu menghasilkan akurasi prediksi sebesar 69,1%, sedikit lebih tinggi dibandingkan Random Forest yang mencapai 68,64%. Selain itu, XGBoost memiliki skor F1 sebesar 0,68 dengan recall 0,69, yang menunjukkan kinerja model yang seimbang antara sensitivitas dan presisi. Sementara Random Forest menghasilkan skor F1 sebesar 0,67. Temuan ini menunjukkan bahwa XGBoost memiliki keunggulan dalam mengolah kompleksitas data pertarungan UFC dan mampu memberikan prediksi yang lebih stabil. Dengan demikian, model berbasis XGBoost direkomendasikan untuk digunakan dalam sistem prediksi hasil pertandingan UFC berbasis data statistik.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Kristanto, Jason NIM01082180038 jasonkriss13@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Lazarusli, Irene Astuti NIDN0317097501 irene.lazarusli@uph.edu |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | Jason Kristanto |
Date Deposited: | 28 Jun 2025 05:14 |
Last Modified: | 01 Jul 2025 07:56 |
URI: | http://repository.uph.edu/id/eprint/69056 |